Explore PANAS statistics.
parent
b8301ca458
commit
5362f64941
|
@ -46,7 +46,43 @@ df_esm_PANAS_clean = clean_up_esm(df_esm_PANAS)
|
|||
|
||||
# %%
|
||||
df_esm_PANAS_grouped = df_esm_PANAS_clean.groupby(
|
||||
["participant_id", "questionnaire_id"]
|
||||
["participant_id", "date_lj", "questionnaire_id"]
|
||||
)
|
||||
|
||||
# %%
|
||||
df_esm_PANAS_daily_sums = (
|
||||
df_esm_PANAS_grouped.esm_user_answer_numeric.agg("sum")
|
||||
.reset_index()
|
||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_sum"})
|
||||
)
|
||||
|
||||
# %% [markdown]
|
||||
# Group by participants, date, and subscale and calculate daily sums.
|
||||
|
||||
# %%
|
||||
df_esm_PANAS_summary_participant = (
|
||||
df_esm_PANAS_daily_sums.groupby(["participant_id", "questionnaire_id"])
|
||||
.agg(["mean", "median", "std"])
|
||||
.reset_index(col_level=1)
|
||||
)
|
||||
df_esm_PANAS_summary_participant.columns = df_esm_PANAS_summary_participant.columns.get_level_values(
|
||||
1
|
||||
)
|
||||
df_esm_PANAS_summary_participant[
|
||||
"PANAS_subscale"
|
||||
] = df_esm_PANAS_daily_sums.questionnaire_id.astype("category").cat.rename_categories(
|
||||
{8.0: "PA", 9.0: "NA"}
|
||||
)
|
||||
|
||||
# %% [markdown]
|
||||
# Next, calculate mean and standard deviation across all days for each participant.
|
||||
|
||||
# %%
|
||||
sns.displot(
|
||||
data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS_subscale", binwidth=2
|
||||
)
|
||||
|
||||
# %%
|
||||
sns.displot(
|
||||
data=df_esm_PANAS_summary_participant, x="std", hue="PANAS_subscale", binwidth=1
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue