Reformat ml_pipeline_regression.py
parent
583ee82e80
commit
48118f125d
|
@ -15,64 +15,69 @@
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
# %matplotlib inline
|
# %matplotlib inline
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.dummy import DummyRegressor
|
|
||||||
import xgboost as xg
|
import xgboost as xg
|
||||||
from IPython.core.interactiveshell import InteractiveShell
|
from sklearn import gaussian_process, kernel_ridge, linear_model, svm
|
||||||
InteractiveShell.ast_node_interactivity = "all"
|
from sklearn.dummy import DummyRegressor
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
|
||||||
|
# from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
# InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
if nb_dir not in sys.path:
|
if nb_dir not in sys.path:
|
||||||
sys.path.append(nb_dir)
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
# %% jupyter={"source_hidden": true}
|
||||||
import machine_learning.labels
|
model_input = pd.read_csv(
|
||||||
import machine_learning.model
|
"../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv"
|
||||||
|
)
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
index_columns = [
|
||||||
|
"local_segment",
|
||||||
# %% jupyter={"source_hidden": true}
|
"local_segment_label",
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
"local_segment_start_datetime",
|
||||||
|
"local_segment_end_datetime",
|
||||||
|
]
|
||||||
# if "pid" in model_input.columns:
|
# if "pid" in model_input.columns:
|
||||||
# index_columns.append("pid")
|
# index_columns.append("pid")
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
cv_method = "half_logo" # logo, half_logo, 5kfold
|
||||||
if cv_method == 'logo':
|
if cv_method == "logo":
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
data_x, data_y, data_groups = (
|
||||||
|
model_input.drop(["target", "pid"], axis=1),
|
||||||
|
model_input["target"],
|
||||||
|
model_input["pid"],
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
model_input["pid_index"] = model_input.groupby("pid").cumcount()
|
||||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
model_input["pid_count"] = model_input.groupby("pid")["pid"].transform("count")
|
||||||
|
|
||||||
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
model_input["pid_index"] = (
|
||||||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
model_input["pid_index"] / model_input["pid_count"] + 1
|
||||||
|
).round()
|
||||||
|
model_input["pid_half"] = (
|
||||||
|
model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
)
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
data_x, data_y, data_groups = (
|
||||||
|
model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1),
|
||||||
|
model_input["target"],
|
||||||
|
model_input["pid_half"],
|
||||||
|
)
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
additional_categorical_features = [
|
||||||
|
col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col
|
||||||
|
]
|
||||||
categorical_feature_colnames += additional_categorical_features
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
|
@ -109,7 +114,7 @@ logo.get_n_splits(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Defaults to 5 k folds in cross_validate method
|
# Defaults to 5 k folds in cross_validate method
|
||||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
if cv_method != "logo" and cv_method != "half_logo":
|
||||||
logo = None
|
logo = None
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
|
@ -120,7 +125,7 @@ sum(data_y.isna())
|
||||||
dummy_regr = DummyRegressor(strategy="mean")
|
dummy_regr = DummyRegressor(strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
dummy_regressor = cross_validate(
|
dummy_regressor = cross_validate(
|
||||||
|
@ -130,12 +135,26 @@ dummy_regressor = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
np.median(dummy_regressor["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(dummy_regressor['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(dummy_regressor["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(dummy_regressor["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(dummy_regressor["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Linear Regression
|
# ### Linear Regression
|
||||||
|
@ -143,7 +162,7 @@ print("R2", np.median(dummy_regressor['test_r2']))
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
lin_reg_rapids = linear_model.LinearRegression()
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_scores = cross_validate(
|
lin_reg_scores = cross_validate(
|
||||||
|
@ -153,19 +172,33 @@ lin_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(lin_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(lin_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(lin_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(lin_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Linear Regression
|
# ### XGBRegressor Linear Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
xgb_r = xg.XGBRegressor(objective="reg:squarederror", n_estimators=10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_reg_scores = cross_validate(
|
xgb_reg_scores = cross_validate(
|
||||||
|
@ -175,19 +208,33 @@ xgb_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(xgb_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(xgb_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(xgb_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(xgb_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(xgb_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Pseudo Huber Error Regression
|
# ### XGBRegressor Pseudo Huber Error Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
xgb_psuedo_huber_r = xg.XGBRegressor(objective="reg:pseudohubererror", n_estimators=10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
|
@ -197,18 +244,32 @@ xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(xgb_psuedo_huber_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Ridge regression
|
# ### Ridge regression
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
# %% tags=[] jupyter={"source_hidden": true}
|
||||||
ridge_reg_scores = cross_validate(
|
ridge_reg_scores = cross_validate(
|
||||||
|
@ -218,12 +279,26 @@ ridge_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(ridge_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(ridge_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(ridge_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(ridge_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(ridge_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Lasso
|
# ### Lasso
|
||||||
|
@ -239,12 +314,26 @@ lasso_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
np.median(lasso_reg_score["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(lasso_reg_score['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(lasso_reg_score["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(lasso_reg_score["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(lasso_reg_score["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Bayesian Ridge
|
# ### Bayesian Ridge
|
||||||
|
@ -260,12 +349,26 @@ bayesian_ridge_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
np.median(bayesian_ridge_reg_score["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(bayesian_ridge_reg_score["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(bayesian_ridge_reg_score["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(bayesian_ridge_reg_score["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### RANSAC (outlier robust regression)
|
# ### RANSAC (outlier robust regression)
|
||||||
|
@ -281,12 +384,26 @@ ransac_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(ransac_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(ransac_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(ransac_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(ransac_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(ransac_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Support vector regression
|
# ### Support vector regression
|
||||||
|
@ -302,12 +419,25 @@ svr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error", np.median(svr_scores["test_neg_mean_squared_error"])
|
||||||
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
)
|
||||||
print("R2", np.median(svr_scores['test_r2']))
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(svr_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(svr_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(svr_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Kernel Ridge regression
|
# ### Kernel Ridge regression
|
||||||
|
@ -323,12 +453,26 @@ kridge_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
np.median(kridge_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(kridge_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(kridge_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(kridge_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(kridge_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Gaussian Process Regression
|
# ### Gaussian Process Regression
|
||||||
|
@ -345,11 +489,24 @@ gpr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error", np.median(gpr_scores["test_neg_mean_squared_error"])
|
||||||
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
)
|
||||||
print("R2", np.median(gpr_scores['test_r2']))
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(gpr_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(gpr_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(gpr_scores["test_r2"]))
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
Loading…
Reference in New Issue