Calculate daily means instead of sums.
parent
5362f64941
commit
3bb66e3838
|
@ -44,24 +44,24 @@ df_esm_PANAS = df_esm_preprocessed[
|
||||||
]
|
]
|
||||||
df_esm_PANAS_clean = clean_up_esm(df_esm_PANAS)
|
df_esm_PANAS_clean = clean_up_esm(df_esm_PANAS)
|
||||||
|
|
||||||
# %%
|
# %% [markdown]
|
||||||
df_esm_PANAS_grouped = df_esm_PANAS_clean.groupby(
|
# Group by participants, date, and subscale and calculate daily means.
|
||||||
["participant_id", "date_lj", "questionnaire_id"]
|
|
||||||
)
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_PANAS_daily_sums = (
|
df_esm_PANAS_daily_means = (
|
||||||
df_esm_PANAS_grouped.esm_user_answer_numeric.agg("sum")
|
df_esm_PANAS_clean.groupby(
|
||||||
|
["participant_id", "date_lj", "questionnaire_id"])
|
||||||
|
.esm_user_answer_numeric.agg("mean")
|
||||||
.reset_index()
|
.reset_index()
|
||||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_sum"})
|
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# Group by participants, date, and subscale and calculate daily sums.
|
# Next, calculate mean, median, and standard deviation across all days for each participant.
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_PANAS_summary_participant = (
|
df_esm_PANAS_summary_participant = (
|
||||||
df_esm_PANAS_daily_sums.groupby(["participant_id", "questionnaire_id"])
|
df_esm_PANAS_daily_means.groupby(["participant_id", "questionnaire_id"])
|
||||||
.agg(["mean", "median", "std"])
|
.agg(["mean", "median", "std"])
|
||||||
.reset_index(col_level=1)
|
.reset_index(col_level=1)
|
||||||
)
|
)
|
||||||
|
@ -70,19 +70,24 @@ df_esm_PANAS_summary_participant.columns = df_esm_PANAS_summary_participant.colu
|
||||||
)
|
)
|
||||||
df_esm_PANAS_summary_participant[
|
df_esm_PANAS_summary_participant[
|
||||||
"PANAS_subscale"
|
"PANAS_subscale"
|
||||||
] = df_esm_PANAS_daily_sums.questionnaire_id.astype("category").cat.rename_categories(
|
] = df_esm_PANAS_daily_means.questionnaire_id.astype("category").cat.rename_categories(
|
||||||
{8.0: "PA", 9.0: "NA"}
|
{8.0: "PA", 9.0: "NA"}
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# Next, calculate mean and standard deviation across all days for each participant.
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
sns.displot(
|
||||||
data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS_subscale", binwidth=2
|
data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS_subscale", binwidth=0.2
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
sns.displot(
|
||||||
data=df_esm_PANAS_summary_participant, x="std", hue="PANAS_subscale", binwidth=1
|
data=df_esm_PANAS_summary_participant, x="median", hue="PANAS_subscale", binwidth=0.2
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
sns.displot(
|
||||||
|
data=df_esm_PANAS_summary_participant, x="std", hue="PANAS_subscale", binwidth=0.05
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1]
|
||||||
|
|
|
@ -242,8 +242,8 @@ df_session_workday[df_session_workday.time_diff_minutes < 30]
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_preprocessed.loc[
|
df_esm_preprocessed.loc[
|
||||||
(df_esm_preprocessed.participant_id == 35) & (df_esm_preprocessed.esm_session == 6),
|
(df_esm_preprocessed.participant_id == 35) & (df_esm_preprocessed.esm_session == 7) & (df_esm_preprocessed.device_id == "62a44038-3ccb-401e-a69c-6f22152c54a6"),
|
||||||
["esm_trigger", "esm_session", "datetime_lj", "esm_instructions"],
|
["esm_trigger", "esm_session", "datetime_lj", "esm_instructions", "device_id", "_id"],
|
||||||
]
|
]
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
Loading…
Reference in New Issue