[WIP] Separate the features part from the pipeline.
parent
d6f36ec8f8
commit
3821314dd9
|
@ -8,6 +8,53 @@ from features import esm, helper, proximity
|
|||
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
|
||||
|
||||
|
||||
class SensorFeatures:
|
||||
def __init__(
|
||||
self,
|
||||
grouping_variable,
|
||||
data_types,
|
||||
feature_names=None,
|
||||
participants_usernames=None,
|
||||
):
|
||||
self.data_types = data_types
|
||||
self.grouping_variable = grouping_variable
|
||||
|
||||
if feature_names is None:
|
||||
self.feature_names = []
|
||||
|
||||
if participants_usernames is None:
|
||||
participants_usernames = participants.query_db.get_usernames(
|
||||
collection_start=datetime.date.fromisoformat("2020-08-01")
|
||||
)
|
||||
self.participants_usernames = participants_usernames
|
||||
|
||||
self.df_proximity = pd.DataFrame()
|
||||
self.df_proximity_counts = pd.DataFrame()
|
||||
|
||||
def set_sensor_data(self):
|
||||
if "proximity" in self.data_types:
|
||||
self.df_proximity = proximity.get_proximity_data(
|
||||
self.participants_usernames
|
||||
)
|
||||
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
|
||||
self.df_proximity = proximity.recode_proximity(self.df_proximity)
|
||||
|
||||
def get_sensor_data(self, data_type) -> pd.DataFrame:
|
||||
# TODO implement the getter (Check if it has been set.)
|
||||
return self.df_proximity
|
||||
|
||||
def calculate_features(self):
|
||||
if "proximity" in self.data_types:
|
||||
self.df_proximity_counts = proximity.count_proximity(
|
||||
self.df_proximity, ["participant_id", self.grouping_variable]
|
||||
)
|
||||
# TODO Think about joining dataframes.
|
||||
|
||||
def get_features(self, data_type) -> pd.DataFrame:
|
||||
# TODO implement the getter (Check if it has been set.)
|
||||
return self.df_proximity_counts
|
||||
|
||||
|
||||
class MachineLearningPipeline:
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -42,8 +89,6 @@ class MachineLearningPipeline:
|
|||
self.df_esm_interest = pd.DataFrame()
|
||||
self.df_esm_clean = pd.DataFrame()
|
||||
|
||||
self.df_proximity = pd.DataFrame()
|
||||
|
||||
self.df_full_data_daily_means = pd.DataFrame()
|
||||
self.df_esm_daily_means = pd.DataFrame()
|
||||
self.df_proximity_daily_counts = pd.DataFrame()
|
||||
|
@ -64,39 +109,31 @@ class MachineLearningPipeline:
|
|||
]
|
||||
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
|
||||
|
||||
def get_sensor_data(self):
|
||||
if "proximity" in self.data_types:
|
||||
self.df_proximity = proximity.get_proximity_data(
|
||||
self.participants_usernames
|
||||
)
|
||||
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
|
||||
self.df_proximity = proximity.recode_proximity(self.df_proximity)
|
||||
|
||||
def aggregate_daily(self):
|
||||
self.df_esm_daily_means = (
|
||||
self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
|
||||
.esm_user_answer_numeric.agg("mean")
|
||||
.reset_index()
|
||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||
)
|
||||
self.df_esm_daily_means = (
|
||||
self.df_esm_daily_means.pivot(
|
||||
index=["participant_id", "date_lj"],
|
||||
columns="questionnaire_id",
|
||||
values="esm_numeric_mean",
|
||||
)
|
||||
.reset_index(col_level=1)
|
||||
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
|
||||
.set_index(["participant_id", "date_lj"])
|
||||
)
|
||||
self.df_full_data_daily_means = self.df_esm_daily_means.copy()
|
||||
if "proximity" in self.data_types:
|
||||
self.df_proximity_daily_counts = proximity.count_proximity(
|
||||
self.df_proximity, ["participant_id", "date_lj"]
|
||||
)
|
||||
self.df_full_data_daily_means = self.df_full_data_daily_means.join(
|
||||
self.df_proximity_daily_counts
|
||||
)
|
||||
# def aggregate_daily(self):
|
||||
# self.df_esm_daily_means = (
|
||||
# self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
|
||||
# .esm_user_answer_numeric.agg("mean")
|
||||
# .reset_index()
|
||||
# .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||
# )
|
||||
# self.df_esm_daily_means = (
|
||||
# self.df_esm_daily_means.pivot(
|
||||
# index=["participant_id", "date_lj"],
|
||||
# columns="questionnaire_id",
|
||||
# values="esm_numeric_mean",
|
||||
# )
|
||||
# .reset_index(col_level=1)
|
||||
# .rename(columns=QUESTIONNAIRE_IDS_RENAME)
|
||||
# .set_index(["participant_id", "date_lj"])
|
||||
# )
|
||||
# self.df_full_data_daily_means = self.df_esm_daily_means.copy()
|
||||
# if "proximity" in self.data_types:
|
||||
# self.df_proximity_daily_counts = proximity.count_proximity(
|
||||
# self.df_proximity, ["participant_id", "date_lj"]
|
||||
# )
|
||||
# self.df_full_data_daily_means = self.df_full_data_daily_means.join(
|
||||
# self.df_proximity_daily_counts
|
||||
# )
|
||||
|
||||
def assign_columns(self):
|
||||
self.df_features = self.df_full_data_daily_means[self.feature_names]
|
||||
|
|
Loading…
Reference in New Issue