Fix formatting and typos.
parent
fbd9c2fc32
commit
2fc80a34e7
|
@ -151,10 +151,8 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
||||||
comm_features = comm_counts.join(comm_duration_total)
|
comm_features = comm_counts.join(comm_duration_total)
|
||||||
comm_features = comm_features.join(comm_duration_max)
|
comm_features = comm_features.join(comm_duration_max)
|
||||||
try:
|
try:
|
||||||
comm_features.drop(columns="duration_total_" +
|
comm_features.drop(columns="duration_total_" + call_types[3], inplace=True)
|
||||||
call_types[3], inplace=True)
|
comm_features.drop(columns="duration_max_" + call_types[3], inplace=True)
|
||||||
comm_features.drop(columns="duration_max_" +
|
|
||||||
call_types[3], inplace=True)
|
|
||||||
# The missed calls are always of 0 duration.
|
# The missed calls are always of 0 duration.
|
||||||
except KeyError:
|
except KeyError:
|
||||||
pass
|
pass
|
||||||
|
@ -175,8 +173,7 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
||||||
)
|
)
|
||||||
# Ratio of incoming and outgoing messages to all messages.
|
# Ratio of incoming and outgoing messages to all messages.
|
||||||
else:
|
else:
|
||||||
raise KeyError(
|
raise KeyError("The dataframe contains neither call_type or message_type")
|
||||||
"The dataframe contains neither call_type or message_type")
|
|
||||||
return comm_features
|
return comm_features
|
||||||
|
|
||||||
|
|
||||||
|
@ -203,11 +200,10 @@ def contact_features(df_enumerated: pd.DataFrame) -> pd.DataFrame:
|
||||||
if "call_duration" in df_enumerated:
|
if "call_duration" in df_enumerated:
|
||||||
# Add a column with the total duration of calls between two people
|
# Add a column with the total duration of calls between two people
|
||||||
duration_count = (
|
duration_count = (
|
||||||
df_enumerated.groupby(
|
df_enumerated.groupby(["participant_id", "contact_id"])
|
||||||
["participant_id", "contact_id"]
|
|
||||||
)
|
|
||||||
# For each participant and for each caller, sum durations of their calls
|
# For each participant and for each caller, sum durations of their calls
|
||||||
["call_duration"].sum()
|
["call_duration"]
|
||||||
|
.sum()
|
||||||
.reset_index() # Make index (which is actually the participant id) a normal column
|
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||||
.rename(columns={"call_duration": "total_call_duration"})
|
.rename(columns={"call_duration": "total_call_duration"})
|
||||||
)
|
)
|
||||||
|
@ -215,13 +211,14 @@ def contact_features(df_enumerated: pd.DataFrame) -> pd.DataFrame:
|
||||||
# participants, callers and the total duration of their calls. All that
|
# participants, callers and the total duration of their calls. All that
|
||||||
# is now left to do is to merge the original df with the new one.
|
# is now left to do is to merge the original df with the new one.
|
||||||
df_enumerated = df_enumerated.merge(
|
df_enumerated = df_enumerated.merge(
|
||||||
duration_count,
|
duration_count, on=["participant_id", "contact_id"]
|
||||||
on=["participant_id", "contact_id"]
|
)
|
||||||
)
|
|
||||||
|
|
||||||
contact_count = (
|
contact_count = (
|
||||||
df_enumerated.groupby(["participant_id"])
|
df_enumerated.groupby(["participant_id"])
|
||||||
.nunique()["contact_id"] # For each participant, count the number of distinct contacts
|
.nunique()[
|
||||||
|
"contact_id"
|
||||||
|
] # For each participant, count the number of distinct contacts
|
||||||
.reset_index() # Make index (which is actually the participant id) a normal column
|
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||||
.rename(columns={"contact_id": "no_contacts"})
|
.rename(columns={"contact_id": "no_contacts"})
|
||||||
)
|
)
|
||||||
|
@ -258,7 +255,7 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
|
||||||
* proportion_calls:
|
* proportion_calls:
|
||||||
proportion of calls in total number of communications
|
proportion of calls in total number of communications
|
||||||
* proportion_calls_incoming:
|
* proportion_calls_incoming:
|
||||||
proportion of incoming calls in total number of incoming/recieved communications
|
proportion of incoming calls in total number of incoming/received communications
|
||||||
* proportion_calls_outgoing:
|
* proportion_calls_outgoing:
|
||||||
proportion of outgoing calls in total number of outgoing/sent communications
|
proportion of outgoing calls in total number of outgoing/sent communications
|
||||||
* proportion_calls_missed_sms_received:
|
* proportion_calls_missed_sms_received:
|
||||||
|
@ -290,12 +287,14 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
|
||||||
)
|
)
|
||||||
# Calculate new features and create additional columns
|
# Calculate new features and create additional columns
|
||||||
)[
|
)[
|
||||||
["participant_id",
|
[
|
||||||
"proportion_calls",
|
"participant_id",
|
||||||
"proportion_calls_incoming",
|
"proportion_calls",
|
||||||
"proportion_calls_outgoing",
|
"proportion_calls_incoming",
|
||||||
"proportion_calls_missed_sms_received"]
|
"proportion_calls_outgoing",
|
||||||
] # Filter out only the relevant feautres
|
"proportion_calls_missed_sms_received",
|
||||||
|
]
|
||||||
|
] # Filter out only the relevant features
|
||||||
)
|
)
|
||||||
|
|
||||||
features_calls = contact_features(enumerate_contacts(df_calls))
|
features_calls = contact_features(enumerate_contacts(df_calls))
|
||||||
|
@ -305,22 +304,21 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
|
||||||
features_calls.merge(
|
features_calls.merge(
|
||||||
features_sms, on="participant_id", suffixes=("_calls", "_sms")
|
features_sms, on="participant_id", suffixes=("_calls", "_sms")
|
||||||
) # Merge calls and sms features
|
) # Merge calls and sms features
|
||||||
.reset_index() # Make participand_id a regular column
|
.reset_index() # Make participant_id a regular column
|
||||||
.assign(
|
.assign(
|
||||||
proportion_calls_contacts=(
|
proportion_calls_contacts=(
|
||||||
lambda x: x.no_contacts_calls /
|
lambda x: x.no_contacts_calls
|
||||||
(x.no_contacts_calls + x.no_contacts_sms)
|
/ (x.no_contacts_calls + x.no_contacts_sms)
|
||||||
) # Calculate new features and create additional columns
|
) # Calculate new features and create additional columns
|
||||||
)[
|
)[
|
||||||
["participant_id",
|
["participant_id", "proportion_calls_contacts"]
|
||||||
"proportion_calls_contacts"]
|
] # Filter out only the relevant features
|
||||||
] # Filter out only the relevant feautres
|
|
||||||
# Since we are interested only in some features and ignored
|
# Since we are interested only in some features and ignored
|
||||||
# others, a lot of duplicate rows were created. Remove them.
|
# others, a lot of duplicate rows were created. Remove them.
|
||||||
.drop_duplicates()
|
.drop_duplicates()
|
||||||
)
|
)
|
||||||
|
|
||||||
# Join the newely created dataframes
|
# Join the newly created dataframes
|
||||||
df_calls_sms = count_joined.merge(features_joined, on="participant_id")
|
df_calls_sms = count_joined.merge(features_joined, on="participant_id")
|
||||||
|
|
||||||
return df_calls_sms
|
return df_calls_sms
|
||||||
|
|
Loading…
Reference in New Issue