Enable reading features from csv files.

rapids
junos 2021-09-14 17:42:34 +02:00
parent af9e81fe40
commit 28699a0fdf
2 changed files with 102 additions and 33 deletions

View File

@ -20,6 +20,8 @@ import importlib
import os
import sys
import numpy as np
import pandas as pd
import seaborn as sns
import yaml
from sklearn import linear_model
@ -37,7 +39,7 @@ import machine_learning.model
import participants.query_db
from features import esm, helper, proximity
# %% [markdown]
# %% [markdown] tags=[]
# # 1. Get the relevant data
# %%
@ -47,7 +49,7 @@ participants_inactive_usernames = participants.query_db.get_usernames(
# Consider only two participants to simplify.
ptcp_2 = participants_inactive_usernames[0:2]
# %% [markdown]
# %% [markdown] jp-MarkdownHeadingCollapsed=true tags=[]
# ## 1.1 Labels
# %%
@ -98,7 +100,7 @@ df_esm_PANAS_daily_means = (
# %%
df_proximity_daily_counts = proximity.count_proximity(
df_proximity, ["participant_id", "date_lj"]
df_proximity, ["date_lj"]
)
# %%
@ -159,10 +161,10 @@ lin_reg_proximity.score(
# # Merging these into a pipeline
# %%
from machine_learning import pipeline
from machine_learning import features_sensor, labels, model, pipeline
# %%
importlib.reload(pipeline)
importlib.reload(features_sensor)
# %%
with open("../machine_learning/config/minimal_features.yaml", "r") as file:
@ -192,10 +194,22 @@ sensor_features.set_sensor_data()
sensor_features.get_sensor_data("proximity")
# %%
sensor_features.calculate_features()
sensor_features.calculate_features(cached=False)
features_all_calculated = sensor_features.get_features("all", "all")
# %%
sensor_features.get_features("all", "all")
sensor_features.calculate_features(cached=True)
features_all_read = sensor_features.get_features("all", "all")
# %%
features_all_read = features_all_read.reset_index()
features_all_read["date_lj"] = features_all_read["date_lj"].dt.date
features_all_read.set_index(["participant_id", "date_lj"], inplace=True)
# date_lj column is parsed as a date and represented as Timestamp, when read from csv.
# When calculated, it is represented as date.
# %%
np.isclose(features_all_read, features_all_calculated).all()
# %%
with open("../machine_learning/config/minimal_labels.yaml", "r") as file:

View File

@ -128,35 +128,69 @@ class SensorFeatures:
else:
raise KeyError("This data type has not been implemented.")
def calculate_features(self):
def calculate_features(self, cached=True):
print("Calculating features ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
self.df_features_all = pd.DataFrame()
if "proximity" in self.data_types:
self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, self.grouping_variable
)
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_proximity_counts
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
)
try:
if not cached: # Do not use the file, even if it exists.
raise FileNotFoundError
self.df_proximity_counts = read_csv_with_settings(
self.folder,
self.filename_prefix,
data_type="prox",
grouping_variable=self.grouping_variable,
)
print("Read proximity features from the file.")
except FileNotFoundError:
# We need to recalculate the features in this case.
self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, self.grouping_variable
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity_counts,
self.folder,
self.filename_prefix,
data_type="prox",
)
finally:
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_proximity_counts
)
if "communication" in self.data_types:
self.df_calls_sms = communication.calls_sms_features(
df_calls=self.df_calls,
df_sms=self.df_sms,
group_by=self.grouping_variable,
)
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_calls_sms
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
)
try:
if not cached: # Do not use the file, even if it exists.
raise FileNotFoundError
self.df_calls_sms = read_csv_with_settings(
self.folder,
self.filename_prefix,
data_type="comm",
grouping_variable=self.grouping_variable,
)
print("Read communication features from the file.")
except FileNotFoundError:
# We need to recalculate the features in this case.
self.df_calls_sms = communication.calls_sms_features(
df_calls=self.df_calls,
df_sms=self.df_sms,
group_by=self.grouping_variable,
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms,
self.folder,
self.filename_prefix,
data_type="comm",
)
finally:
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_calls_sms
)
self.df_features_all.fillna(
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
@ -211,14 +245,35 @@ def safe_outer_merge_on_index(left, right):
def to_csv_with_settings(
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
) -> None:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
full_path = construct_full_path(folder, filename_prefix, data_type)
df.to_csv(
path_or_buf=full_path,
sep=",",
na_rep="NA",
header=True,
index=False,
index=True,
encoding="utf-8",
)
print("Exported the dataframe to " + str(full_path))
def read_csv_with_settings(
folder: Path, filename_prefix: str, data_type: str, grouping_variable: list
) -> pd.DataFrame:
full_path = construct_full_path(folder, filename_prefix, data_type)
return pd.read_csv(
filepath_or_buffer=full_path,
sep=",",
header=0,
na_values="NA",
encoding="utf-8",
index_col=(["participant_id"] + grouping_variable),
parse_dates=True,
infer_datetime_format=True,
)
def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> Path:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
return full_path