Add an option to save figures.
parent
87781840d4
commit
26c7d22b83
|
@ -7,7 +7,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.13.0
|
# jupytext_version: 1.14.5
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -15,19 +15,24 @@
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
import participants.query_db
|
import participants.query_db
|
||||||
from features.esm import *
|
from features.esm import clean_up_esm, get_esm_data, preprocess_esm
|
||||||
from features.esm_JCQ import *
|
from features.esm_JCQ import reverse_jcq_demand_control_scoring
|
||||||
from features.esm_SAM import *
|
from features.esm_SAM import extract_stressful_events
|
||||||
|
|
||||||
|
# import os
|
||||||
|
# import sys
|
||||||
|
# nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
# if nb_dir not in sys.path:
|
||||||
|
# sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
save_figs = True
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
participants_inactive_usernames = participants.query_db.get_usernames(
|
participants_inactive_usernames = participants.query_db.get_usernames(
|
||||||
|
@ -60,7 +65,8 @@ df_esm_PANAS_daily_means = (
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# Next, calculate mean, median, and standard deviation across all days for each participant.
|
# Next, calculate mean, median,
|
||||||
|
# and standard deviation across all days for each participant.
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_PANAS_summary_participant = (
|
df_esm_PANAS_summary_participant = (
|
||||||
|
@ -68,8 +74,8 @@ df_esm_PANAS_summary_participant = (
|
||||||
.agg(["mean", "median", "std"])
|
.agg(["mean", "median", "std"])
|
||||||
.reset_index(col_level=1)
|
.reset_index(col_level=1)
|
||||||
)
|
)
|
||||||
df_esm_PANAS_summary_participant.columns = df_esm_PANAS_summary_participant.columns.get_level_values(
|
df_esm_PANAS_summary_participant.columns = (
|
||||||
1
|
df_esm_PANAS_summary_participant.columns.get_level_values(1)
|
||||||
)
|
)
|
||||||
df_esm_PANAS_summary_participant[
|
df_esm_PANAS_summary_participant[
|
||||||
"PANAS_subscale"
|
"PANAS_subscale"
|
||||||
|
@ -78,9 +84,11 @@ df_esm_PANAS_summary_participant[
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
fig1 = sns.displot(
|
||||||
data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS_subscale", binwidth=0.2
|
data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS_subscale", binwidth=0.2
|
||||||
)
|
)
|
||||||
|
if save_figs:
|
||||||
|
fig1.figure.savefig("PANAS_mean_participant.png", dpi=300)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
sns.displot(
|
||||||
|
@ -91,9 +99,11 @@ sns.displot(
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
fig2 = sns.displot(
|
||||||
data=df_esm_PANAS_summary_participant, x="std", hue="PANAS_subscale", binwidth=0.05
|
data=df_esm_PANAS_summary_participant, x="std", hue="PANAS_subscale", binwidth=0.05
|
||||||
)
|
)
|
||||||
|
if save_figs:
|
||||||
|
fig2.figure.savefig("PANAS_std_participant.png", dpi=300)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1]
|
df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1]
|
||||||
|
@ -131,7 +141,9 @@ df_esm_SAM_daily_events = (
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# Calculate the daily mean of YES (1) or NO (0) answers to the question about a stressful events. This is then the daily ratio of EMA sessions that included a stressful event.
|
# Calculate the daily mean of YES (1) or NO (0) answers
|
||||||
|
# to the question about stressful events.
|
||||||
|
# This is then the daily ratio of EMA sessions that included a stressful event.
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_SAM_event_summary_participant = (
|
df_esm_SAM_event_summary_participant = (
|
||||||
|
@ -139,12 +151,14 @@ df_esm_SAM_event_summary_participant = (
|
||||||
.agg(["mean", "median", "std"])
|
.agg(["mean", "median", "std"])
|
||||||
.reset_index(col_level=1)
|
.reset_index(col_level=1)
|
||||||
)
|
)
|
||||||
df_esm_SAM_event_summary_participant.columns = df_esm_SAM_event_summary_participant.columns.get_level_values(
|
df_esm_SAM_event_summary_participant.columns = (
|
||||||
1
|
df_esm_SAM_event_summary_participant.columns.get_level_values(1)
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(data=df_esm_SAM_event_summary_participant, x="mean", binwidth=0.1)
|
fig6 = sns.displot(data=df_esm_SAM_event_summary_participant, x="mean", binwidth=0.1)
|
||||||
|
if save_figs:
|
||||||
|
fig6.figure.savefig("SAM_events_mean_participant.png", dpi=300)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(data=df_esm_SAM_event_summary_participant, x="std", binwidth=0.05)
|
sns.displot(data=df_esm_SAM_event_summary_participant, x="std", binwidth=0.05)
|
||||||
|
@ -155,7 +169,12 @@ sns.displot(data=df_esm_SAM_event_summary_participant, x="std", binwidth=0.05)
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# * Example of threat: "Did this event make you feel anxious?"
|
# * Example of threat: "Did this event make you feel anxious?"
|
||||||
# * Example of challenge: "How eager are you to tackle this event?"
|
# * Example of challenge: "How eager are you to tackle this event?"
|
||||||
# * Possible answers: 0 - Not at all, 1 - Slightly, 2 - Moderately, 3 - Considerably, 4 - Extremely
|
# * Possible answers:
|
||||||
|
# 0 - Not at all,
|
||||||
|
# 1 - Slightly,
|
||||||
|
# 2 - Moderately,
|
||||||
|
# 3 - Considerably,
|
||||||
|
# 4 - Extremely
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_SAM_daily = (
|
df_esm_SAM_daily = (
|
||||||
|
@ -177,8 +196,8 @@ df_esm_SAM_summary_participant = (
|
||||||
.agg(["mean", "median", "std"])
|
.agg(["mean", "median", "std"])
|
||||||
.reset_index(col_level=1)
|
.reset_index(col_level=1)
|
||||||
)
|
)
|
||||||
df_esm_SAM_summary_participant.columns = df_esm_SAM_summary_participant.columns.get_level_values(
|
df_esm_SAM_summary_participant.columns = (
|
||||||
1
|
df_esm_SAM_summary_participant.columns.get_level_values(1)
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -203,12 +222,14 @@ sns.displot(
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
fig3 = sns.displot(
|
||||||
data=df_esm_SAM_threat_challenge_summary_participant,
|
data=df_esm_SAM_threat_challenge_summary_participant,
|
||||||
x="std",
|
x="std",
|
||||||
hue="event_subscale",
|
hue="event_subscale",
|
||||||
binwidth=0.1,
|
binwidth=0.1,
|
||||||
)
|
)
|
||||||
|
if save_figs:
|
||||||
|
fig3.figure.savefig("SAM_std_participant.png", dpi=300)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ## Stressfulness of period
|
# ## Stressfulness of period
|
||||||
|
@ -253,8 +274,8 @@ df_esm_JCQ_summary_participant = (
|
||||||
.agg(["mean", "median", "std"])
|
.agg(["mean", "median", "std"])
|
||||||
.reset_index(col_level=1)
|
.reset_index(col_level=1)
|
||||||
)
|
)
|
||||||
df_esm_JCQ_summary_participant.columns = df_esm_JCQ_summary_participant.columns.get_level_values(
|
df_esm_JCQ_summary_participant.columns = (
|
||||||
1
|
df_esm_JCQ_summary_participant.columns.get_level_values(1)
|
||||||
)
|
)
|
||||||
df_esm_JCQ_summary_participant[
|
df_esm_JCQ_summary_participant[
|
||||||
"JCQ_subscale"
|
"JCQ_subscale"
|
||||||
|
@ -265,11 +286,23 @@ df_esm_JCQ_summary_participant[
|
||||||
)
|
)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
fig4 = sns.displot(
|
||||||
data=df_esm_JCQ_summary_participant, x="mean", hue="JCQ_subscale", binwidth=0.1,
|
data=df_esm_JCQ_summary_participant,
|
||||||
|
x="mean",
|
||||||
|
hue="JCQ_subscale",
|
||||||
|
binwidth=0.1,
|
||||||
)
|
)
|
||||||
|
if save_figs:
|
||||||
|
fig4.figure.savefig("JCQ_mean_participant.png", dpi=300)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(
|
fig5 = sns.displot(
|
||||||
data=df_esm_JCQ_summary_participant, x="std", hue="JCQ_subscale", binwidth=0.05,
|
data=df_esm_JCQ_summary_participant,
|
||||||
|
x="std",
|
||||||
|
hue="JCQ_subscale",
|
||||||
|
binwidth=0.05,
|
||||||
)
|
)
|
||||||
|
if save_figs:
|
||||||
|
fig5.figure.savefig("JCQ_std_participant.png", dpi=300)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
Loading…
Reference in New Issue