Add baseline features.
parent
9cc6bf7c21
commit
112d968715
|
@ -46,12 +46,7 @@ print("SEGMENT_LENGTH: " + SEGMENT_LENGTH)
|
|||
|
||||
PATH_FULL = PATH_BASE / SEGMENT_LENGTH / "features" / "all_sensor_features.csv"
|
||||
|
||||
model_input = pd.read_csv(PATH_FULL)
|
||||
|
||||
if SEGMENT_LENGTH == "daily":
|
||||
DAY_LENGTH = "daily" # or "working"
|
||||
print(DAY_LENGTH)
|
||||
model_input = model_input[model_input["local_segment"].str.contains(DAY_LENGTH)]
|
||||
all_features_with_baseline = pd.read_csv(PATH_FULL)
|
||||
|
||||
# %%
|
||||
TARGETS = [
|
||||
|
@ -129,8 +124,29 @@ if UNDERSAMPLING:
|
|||
model_input = pd.concat([stress, no_stress], axis=0)
|
||||
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
# %%
|
||||
TARGET_VARIABLE = "PANAS_negative_affect"
|
||||
print("TARGET_VARIABLE: " + TARGET_VARIABLE)
|
||||
|
||||
PATH_FULL_HELP = PATH_BASE / SEGMENT_LENGTH / ("input_" + TARGET_VARIABLE + "_mean.csv")
|
||||
|
||||
model_input_with_baseline = pd.read_csv(PATH_FULL_HELP, index_col="local_segment")
|
||||
|
||||
# %%
|
||||
baseline_col_names = [
|
||||
col for col in model_input_with_baseline.columns if col not in model_input.columns
|
||||
]
|
||||
print(baseline_col_names)
|
||||
|
||||
# %%
|
||||
model_input = model_input.join(
|
||||
model_input_with_baseline[baseline_col_names], how="left"
|
||||
)
|
||||
model_input.reset_index(inplace=True)
|
||||
|
||||
# %%
|
||||
model_input_encoded = impute_encode_categorical_features(model_input)
|
||||
|
||||
# %%
|
||||
data_x, data_y, data_groups = prepare_sklearn_data_format(
|
||||
model_input_encoded, CV_METHOD
|
||||
|
|
Loading…
Reference in New Issue