2021-12-15 16:03:49 +01:00
|
|
|
# ---
|
|
|
|
# jupyter:
|
|
|
|
# jupytext:
|
|
|
|
# formats: ipynb,py:percent
|
|
|
|
# text_representation:
|
|
|
|
# extension: .py
|
|
|
|
# format_name: percent
|
|
|
|
# format_version: '1.3'
|
|
|
|
# jupytext_version: 1.13.0
|
|
|
|
# kernelspec:
|
|
|
|
# display_name: straw2analysis
|
|
|
|
# language: python
|
|
|
|
# name: straw2analysis
|
|
|
|
# ---
|
|
|
|
|
|
|
|
# %%
|
|
|
|
import os, sys
|
|
|
|
import importlib
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
# import plotly.graph_objects as go
|
|
|
|
from importlib import util
|
|
|
|
from pathlib import Path
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield = pd.read_csv(
|
|
|
|
"../rapids/data/interim/p011/phone_yielded_timestamps_with_datetime.csv",
|
|
|
|
parse_dates=["local_date_time"],
|
|
|
|
)
|
|
|
|
time_segments_labels = pd.read_csv(
|
|
|
|
"../rapids/data/interim/time_segments/p011_time_segments_labels.csv"
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield["assigned_segments"] = phone_data_yield[
|
|
|
|
"assigned_segments"
|
|
|
|
].str.replace(r"_RR\d+SS#", "#")
|
|
|
|
time_segments_labels["label"] = time_segments_labels["label"].str.replace(
|
|
|
|
r"_RR\d+SS$", ""
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# %% tags=[]
|
|
|
|
def filter_data_by_segment(data, time_segment):
|
|
|
|
data.dropna(subset=["assigned_segments"], inplace=True)
|
|
|
|
if data.shape[0] == 0: # data is empty
|
|
|
|
data["local_segment"] = data["timestamps_segment"] = None
|
|
|
|
return data
|
|
|
|
|
|
|
|
datetime_regex = "[0-9]{4}[\-|\/][0-9]{2}[\-|\/][0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}"
|
|
|
|
timestamps_regex = "[0-9]{13}"
|
|
|
|
segment_regex = "\[({}#{},{};{},{})\]".format(
|
|
|
|
time_segment, datetime_regex, datetime_regex, timestamps_regex, timestamps_regex
|
|
|
|
)
|
|
|
|
data["local_segment"] = data["assigned_segments"].str.extract(
|
|
|
|
segment_regex, expand=True
|
|
|
|
)
|
|
|
|
data = data.drop(columns=["assigned_segments"])
|
|
|
|
data = data.dropna(subset=["local_segment"])
|
|
|
|
if (
|
|
|
|
data.shape[0] == 0
|
|
|
|
): # there are no rows belonging to time_segment after droping na
|
|
|
|
data["timestamps_segment"] = None
|
|
|
|
else:
|
|
|
|
data[["local_segment", "timestamps_segment"]] = data["local_segment"].str.split(
|
|
|
|
pat=";", n=1, expand=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# chunk episodes
|
|
|
|
if (
|
|
|
|
(not data.empty)
|
|
|
|
and ("start_timestamp" in data.columns)
|
|
|
|
and ("end_timestamp" in data.columns)
|
|
|
|
):
|
|
|
|
data = chunk_episodes(data)
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
# %% tags=[]
|
|
|
|
time_segment = "daily"
|
|
|
|
phone_data_yield_per_segment = filter_data_by_segment(phone_data_yield, time_segment)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield.tail()
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment.tail()
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
def getDataForPlot(phone_data_yield_per_segment):
|
|
|
|
# calculate the length (in minute) of per segment instance
|
|
|
|
phone_data_yield_per_segment["length"] = (
|
|
|
|
phone_data_yield_per_segment["timestamps_segment"]
|
|
|
|
.str.split(",")
|
|
|
|
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
|
|
|
|
)
|
|
|
|
# calculate the number of sensors logged at least one row of data per minute.
|
|
|
|
phone_data_yield_per_segment = (
|
|
|
|
phone_data_yield_per_segment.groupby(
|
|
|
|
["local_segment", "length", "local_date", "local_hour", "local_minute"]
|
|
|
|
)[["sensor", "local_date_time"]]
|
|
|
|
.max()
|
|
|
|
.reset_index()
|
|
|
|
)
|
|
|
|
# extract local start datetime of the segment from "local_segment" column
|
|
|
|
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
|
|
|
|
phone_data_yield_per_segment["local_segment"].apply(
|
|
|
|
lambda x: x.split("#")[1].split(",")[0]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# calculate the number of minutes after local start datetime of the segment
|
|
|
|
phone_data_yield_per_segment["minutes_after_segment_start"] = (
|
|
|
|
(
|
|
|
|
phone_data_yield_per_segment["local_date_time"]
|
|
|
|
- phone_data_yield_per_segment["local_segment_start_datetimes"]
|
|
|
|
)
|
|
|
|
/ pd.Timedelta(minutes=1)
|
|
|
|
).astype("int")
|
|
|
|
|
|
|
|
# impute missing rows with 0
|
|
|
|
columns_for_full_index = phone_data_yield_per_segment[
|
|
|
|
["local_segment_start_datetimes", "length"]
|
|
|
|
].drop_duplicates(keep="first")
|
|
|
|
columns_for_full_index = columns_for_full_index.apply(
|
|
|
|
lambda row: [
|
|
|
|
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
|
|
|
|
],
|
|
|
|
axis=1,
|
|
|
|
)
|
|
|
|
full_index = []
|
|
|
|
for columns in columns_for_full_index:
|
|
|
|
full_index = full_index + columns
|
|
|
|
full_index = pd.MultiIndex.from_tuples(
|
|
|
|
full_index,
|
|
|
|
names=("local_segment_start_datetimes", "minutes_after_segment_start"),
|
|
|
|
)
|
|
|
|
phone_data_yield_per_segment = (
|
|
|
|
phone_data_yield_per_segment.set_index(
|
|
|
|
["local_segment_start_datetimes", "minutes_after_segment_start"]
|
|
|
|
)
|
|
|
|
.reindex(full_index)
|
|
|
|
.reset_index()
|
|
|
|
.fillna(0)
|
|
|
|
)
|
|
|
|
|
|
|
|
# transpose the dataframe per local start datetime of the segment and discard the useless index layer
|
|
|
|
phone_data_yield_per_segment = phone_data_yield_per_segment.groupby(
|
|
|
|
"local_segment_start_datetimes"
|
|
|
|
)[["minutes_after_segment_start", "sensor"]].apply(
|
|
|
|
lambda x: x.set_index("minutes_after_segment_start").transpose()
|
|
|
|
)
|
|
|
|
phone_data_yield_per_segment.index = phone_data_yield_per_segment.index.get_level_values(
|
|
|
|
"local_segment_start_datetimes"
|
|
|
|
)
|
|
|
|
return phone_data_yield_per_segment
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
data_for_plot_per_segment = getDataForPlot(phone_data_yield_per_segment)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# calculate the length (in minute) of per segment instance
|
|
|
|
phone_data_yield_per_segment["length"] = (
|
|
|
|
phone_data_yield_per_segment["timestamps_segment"]
|
|
|
|
.str.split(",")
|
|
|
|
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment.tail()
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# calculate the number of sensors logged at least one row of data per minute.
|
|
|
|
phone_data_yield_per_segment = (
|
|
|
|
phone_data_yield_per_segment.groupby(
|
|
|
|
["local_segment", "length", "local_date", "local_hour", "local_minute"]
|
|
|
|
)[["sensor", "local_date_time"]]
|
|
|
|
.max()
|
|
|
|
.reset_index()
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# extract local start datetime of the segment from "local_segment" column
|
|
|
|
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
|
|
|
|
phone_data_yield_per_segment["local_segment"].apply(
|
|
|
|
lambda x: x.split("#")[1].split(",")[0]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# calculate the number of minutes after local start datetime of the segment
|
|
|
|
phone_data_yield_per_segment["minutes_after_segment_start"] = (
|
|
|
|
(
|
|
|
|
phone_data_yield_per_segment["local_date_time"]
|
|
|
|
- phone_data_yield_per_segment["local_segment_start_datetimes"]
|
|
|
|
)
|
|
|
|
/ pd.Timedelta(minutes=1)
|
|
|
|
).astype("int")
|
|
|
|
|
|
|
|
# %%
|
|
|
|
columns_for_full_index = phone_data_yield_per_segment[
|
|
|
|
["local_segment_start_datetimes", "length"]
|
|
|
|
].drop_duplicates(keep="first")
|
|
|
|
columns_for_full_index = columns_for_full_index.apply(
|
|
|
|
lambda row: [
|
|
|
|
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
|
|
|
|
],
|
|
|
|
axis=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
full_index = []
|
|
|
|
for columns in columns_for_full_index:
|
|
|
|
full_index = full_index + columns
|
|
|
|
full_index = pd.MultiIndex.from_tuples(
|
|
|
|
full_index, names=("local_segment_start_datetimes", "minutes_after_segment_start")
|
|
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment.tail()
|
|
|
|
|
|
|
|
# %% [markdown]
|
|
|
|
# # A workaround
|
|
|
|
|
|
|
|
# %%
|
2021-12-15 18:25:53 +01:00
|
|
|
phone_data_yield_per_segment["local_segment_start_datetimes", "minutes_after_segment_start"] = phone_data_yield_per_segment[
|
2021-12-15 16:03:49 +01:00
|
|
|
["local_segment_start_datetimes", "minutes_after_segment_start"]
|
|
|
|
].drop_duplicates(keep="first")
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment.set_index(
|
|
|
|
["local_segment_start_datetimes", "minutes_after_segment_start"],
|
|
|
|
verify_integrity=True,
|
|
|
|
).reindex(full_index)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment.head()
|
|
|
|
|
2021-12-15 18:25:53 +01:00
|
|
|
|
|
|
|
# %% [markdown]
|
|
|
|
# # Retry
|
|
|
|
|
|
|
|
# %%
|
|
|
|
def getDataForPlot(phone_data_yield_per_segment):
|
|
|
|
# calculate the length (in minute) of per segment instance
|
|
|
|
phone_data_yield_per_segment["length"] = (
|
|
|
|
phone_data_yield_per_segment["timestamps_segment"]
|
|
|
|
.str.split(",")
|
|
|
|
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
|
|
|
|
)
|
|
|
|
# calculate the number of sensors logged at least one row of data per minute.
|
|
|
|
phone_data_yield_per_segment = (
|
|
|
|
phone_data_yield_per_segment.groupby(
|
|
|
|
["local_segment", "length", "local_date", "local_hour", "local_minute"]
|
|
|
|
)[["sensor", "local_date_time"]]
|
|
|
|
.max()
|
|
|
|
.reset_index()
|
|
|
|
)
|
|
|
|
# extract local start datetime of the segment from "local_segment" column
|
|
|
|
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
|
|
|
|
phone_data_yield_per_segment["local_segment"].apply(
|
|
|
|
lambda x: x.split("#")[1].split(",")[0]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# calculate the number of minutes after local start datetime of the segment
|
|
|
|
phone_data_yield_per_segment["minutes_after_segment_start"] = (
|
|
|
|
(
|
|
|
|
phone_data_yield_per_segment["local_date_time"]
|
|
|
|
- phone_data_yield_per_segment["local_segment_start_datetimes"]
|
|
|
|
)
|
|
|
|
/ pd.Timedelta(minutes=1)
|
|
|
|
).astype("int")
|
|
|
|
|
|
|
|
# impute missing rows with 0
|
|
|
|
columns_for_full_index = phone_data_yield_per_segment[
|
|
|
|
["local_segment_start_datetimes", "length"]
|
|
|
|
].drop_duplicates(keep="first")
|
|
|
|
columns_for_full_index = columns_for_full_index.apply(
|
|
|
|
lambda row: [
|
|
|
|
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
|
|
|
|
],
|
|
|
|
axis=1,
|
|
|
|
)
|
|
|
|
full_index = []
|
|
|
|
for columns in columns_for_full_index:
|
|
|
|
full_index = full_index + columns
|
|
|
|
full_index = pd.MultiIndex.from_tuples(
|
|
|
|
full_index,
|
|
|
|
names=("local_segment_start_datetimes", "minutes_after_segment_start"),
|
|
|
|
)
|
|
|
|
phone_data_yield_per_segment = phone_data_yield_per_segment.drop_duplicates(subset=["local_segment_start_datetimes", "minutes_after_segment_start"],keep="first")
|
|
|
|
phone_data_yield_per_segment = (
|
|
|
|
phone_data_yield_per_segment.set_index(
|
|
|
|
["local_segment_start_datetimes", "minutes_after_segment_start"]
|
|
|
|
)
|
|
|
|
.reindex(full_index)
|
|
|
|
.reset_index()
|
|
|
|
.fillna(0)
|
|
|
|
)
|
|
|
|
|
|
|
|
# transpose the dataframe per local start datetime of the segment and discard the useless index layer
|
|
|
|
phone_data_yield_per_segment = phone_data_yield_per_segment.groupby(
|
|
|
|
"local_segment_start_datetimes"
|
|
|
|
)[["minutes_after_segment_start", "sensor"]].apply(
|
|
|
|
lambda x: x.set_index("minutes_after_segment_start").transpose()
|
|
|
|
)
|
|
|
|
phone_data_yield_per_segment.index = phone_data_yield_per_segment.index.get_level_values(
|
|
|
|
"local_segment_start_datetimes"
|
|
|
|
)
|
|
|
|
return phone_data_yield_per_segment
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
phone_data_yield_per_segment = filter_data_by_segment(phone_data_yield, time_segment)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
data_for_plot_per_segment = getDataForPlot(phone_data_yield_per_segment)
|
|
|
|
|
2021-12-15 16:03:49 +01:00
|
|
|
# %%
|