32 lines
1.2 KiB
Python
32 lines
1.2 KiB
Python
|
import unittest
|
||
|
|
||
|
from features.proximity import *
|
||
|
|
||
|
|
||
|
class ProximityFeatures(unittest.TestCase):
|
||
|
df_proximity = pd.DataFrame()
|
||
|
df_proximity_recoded = pd.DataFrame()
|
||
|
df_proximity_features = pd.DataFrame()
|
||
|
|
||
|
@classmethod
|
||
|
def setUpClass(cls) -> None:
|
||
|
cls.df_proximity = pd.read_csv("../data/example_proximity.csv")
|
||
|
cls.df_proximity["participant_id"] = 99
|
||
|
|
||
|
def test_recode_proximity(self):
|
||
|
self.df_proximity_recoded = recode_proximity(self.df_proximity)
|
||
|
self.assertIn("bool_prox_near", self.df_proximity_recoded)
|
||
|
# Is the recoded column present?
|
||
|
self.assertIn(True, self.df_proximity_recoded.bool_prox_near)
|
||
|
# Are there "near" values in the data?
|
||
|
self.assertIn(False, self.df_proximity_recoded.bool_prox_near)
|
||
|
# Are there "far" values in the data?
|
||
|
|
||
|
def test_count_proximity(self):
|
||
|
self.df_proximity_recoded = recode_proximity(self.df_proximity)
|
||
|
self.df_proximity_features = count_proximity(self.df_proximity_recoded)
|
||
|
print(self.df_proximity_features.columns)
|
||
|
self.assertCountEqual(
|
||
|
self.df_proximity_features.columns.to_list(), FEATURES_PROXIMITY
|
||
|
)
|