stress_at_work_analysis/exploration/ml_pipeline_classification_...

233 lines
8.4 KiB
Python
Raw Normal View History

# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
from sklearn.dummy import DummyClassifier
from sklearn.impute import SimpleImputer
from lightgbm import LGBMClassifier
import xgboost as xg
from sklearn.cluster import KMeans
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.labels
import machine_learning.model
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## Set script's parameters
n_clusters = 5 # Number of clusters (could be regarded as a hyperparameter)
cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
model_input.columns[list(model_input.columns).index('age'):-1]
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
lime_cols
lime_col = 'limesurvey_demand_control_ratio'
clust_col = lime_col
model_input[clust_col].describe()
# %% jupyter={"source_hidden": true}
# Filter-out outlier rows by clust_col
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
plt.bar(uniq['pid'], uniq[clust_col])
# %% jupyter={"source_hidden": true}
# Get clusters by cluster col & and merge the clusters to main df
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
np.unique(km, return_counts=True)
uniq['cluster'] = km
uniq
model_input = model_input.merge(uniq[['pid', 'cluster']])
# %% jupyter={"source_hidden": true}
model_input.set_index(index_columns, inplace=True)
# %% jupyter={"source_hidden": true}
# Create dict with classification ml models
cmodels = {
'dummy_classifier': {
'model': DummyClassifier(strategy="most_frequent"),
'metrics': [0, 0, 0, 0]
},
'logistic_regression': {
'model': linear_model.LogisticRegression(),
'metrics': [0, 0, 0, 0]
},
'support_vector_machine': {
'model': svm.SVC(),
'metrics': [0, 0, 0, 0]
},
'gaussian_naive_bayes': {
'model': naive_bayes.GaussianNB(),
'metrics': [0, 0, 0, 0]
},
'stochastic_gradient_descent_classifier': {
'model': linear_model.SGDClassifier(),
'metrics': [0, 0, 0, 0]
},
'knn': {
'model': neighbors.KNeighborsClassifier(),
'metrics': [0, 0, 0, 0]
},
'decision_tree': {
'model': tree.DecisionTreeClassifier(),
'metrics': [0, 0, 0, 0]
},
'random_forest_classifier': {
'model': ensemble.RandomForestClassifier(),
'metrics': [0, 0, 0, 0]
},
'gradient_boosting_classifier': {
'model': ensemble.GradientBoostingClassifier(),
'metrics': [0, 0, 0, 0]
},
'lgbm_classifier': {
'model': LGBMClassifier(),
'metrics': [0, 0, 0, 0]
},
'XGBoost_classifier': {
'model': xg.sklearn.XGBClassifier(),
'metrics': [0, 0, 0, 0]
}
}
# %% jupyter={"source_hidden": true}
for k in range(n_clusters):
model_input_subset = model_input[model_input["cluster"] == k].copy()
bins = [-10, -1, 1, 10] # bins for z-scored targets
model_input_subset.loc[:, 'target'] = \
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high']
model_input_subset['target'].value_counts()
model_input_subset = model_input_subset[model_input_subset['target'] != "medium"]
model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
model_input_subset['target'].value_counts()
if cv_method_str == 'halflogo':
model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount()
model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count')
model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round()
model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"]
else:
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"]
# Treat categorical features
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [] #[col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = data_x[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# Establish cv method
cv_method = None # Defaults to 5 k-folds in cross_validate method
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
cv_method = LeaveOneGroupOut()
cv_method.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
for model_title, model in cmodels.items():
classifier = cross_validate(
model['model'],
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
print("\n-------------------------------------\n")
print("Current cluster:", k, end="\n")
print("Current model:", model_title, end="\n")
print("Acc", np.mean(classifier['test_accuracy']))
print("Precision", np.mean(classifier['test_precision']))
print("Recall", np.mean(classifier['test_recall']))
print("F1", np.mean(classifier['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(classifier['test_accuracy'], n_sl)[:n_sl]))
cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy'])
cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision'])
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_accuracy'])
cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1'])
# %% jupyter={"source_hidden": true}
# Get overall results
for model_title, model in cmodels.items():
print("\n************************************\n")
print("Current model:", model_title, end="\n")
print("Acc", model['metrics'][0]/n_clusters)
print("Precision", model['metrics'][1]/n_clusters)
print("Recall", model['metrics'][2]/n_clusters)
print("F1", model['metrics'][3]/n_clusters)