586 lines
29 KiB
YAML
586 lines
29 KiB
YAML
########################################################################################################################
|
|
# GLOBAL CONFIGURATION #
|
|
########################################################################################################################
|
|
|
|
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
|
PIDS: [example01, example02]
|
|
|
|
# See https://www.rapids.science/latest/setup/configuration/#time-segments
|
|
TIME_SEGMENTS: &time_segments
|
|
TYPE: PERIODIC # FREQUENCY, PERIODIC, EVENT
|
|
FILE: "example_profile/exampleworkflow_timesegments.csv"
|
|
INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE # Only relevant if TYPE=PERIODIC, see docs
|
|
|
|
# See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study
|
|
TIMEZONE:
|
|
TYPE: SINGLE
|
|
SINGLE:
|
|
TZCODE: America/New_York
|
|
MULTIPLE:
|
|
TZCODES_FILE: data/external/multiple_timezones_example.csv
|
|
IF_MISSING_TZCODE: STOP
|
|
DEFAULT_TZCODE: America/New_York
|
|
FITBIT:
|
|
ALLOW_MULTIPLE_TZ_PER_DEVICE: False
|
|
INFER_FROM_SMARTPHONE_TZ: False
|
|
|
|
########################################################################################################################
|
|
# PHONE #
|
|
########################################################################################################################
|
|
|
|
# See https://www.rapids.science/latest/setup/configuration/#data-stream-configuration
|
|
PHONE_DATA_STREAMS:
|
|
USE: aware_csv
|
|
|
|
# AVAILABLE:
|
|
aware_mysql:
|
|
DATABASE_GROUP: MY_GROUP
|
|
|
|
aware_csv:
|
|
FOLDER: data/external/example_workflow
|
|
|
|
aware_influxdb:
|
|
DATABASE_GROUP: MY_GROUP
|
|
|
|
# Sensors ------
|
|
|
|
# https://www.rapids.science/latest/features/phone-accelerometer/
|
|
PHONE_ACCELEROMETER:
|
|
CONTAINER: accelerometer
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: False
|
|
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
|
SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py
|
|
|
|
PANDA:
|
|
COMPUTE: False
|
|
VALID_SENSED_MINUTES: False
|
|
FEATURES:
|
|
exertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]
|
|
nonexertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]
|
|
SRC_SCRIPT: src/features/phone_accelerometer/panda/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-activity-recognition/
|
|
PHONE_ACTIVITY_RECOGNITION:
|
|
CONTAINER:
|
|
ANDROID: plugin_google_activity_recognition.csv
|
|
IOS: plugin_ios_activity_recognition.csv
|
|
EPISODE_THRESHOLD_BETWEEN_ROWS: 5 # minutes. Max time difference for two consecutive rows to be considered within the same battery episode.
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["count", "mostcommonactivity", "countuniqueactivities", "durationstationary", "durationmobile", "durationvehicle"]
|
|
ACTIVITY_CLASSES:
|
|
STATIONARY: ["still", "tilting"]
|
|
MOBILE: ["on_foot", "walking", "running", "on_bicycle"]
|
|
VEHICLE: ["in_vehicle"]
|
|
SRC_SCRIPT: src/features/phone_activity_recognition/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-applications-crashes/
|
|
PHONE_APPLICATIONS_CRASHES:
|
|
CONTAINER: applications_crashes
|
|
APPLICATION_CATEGORIES:
|
|
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
|
|
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
|
|
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
|
|
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
|
|
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
|
|
|
|
# See https://www.rapids.science/latest/features/phone-applications-foreground/
|
|
PHONE_APPLICATIONS_FOREGROUND:
|
|
CONTAINER: applications_foreground.csv
|
|
APPLICATION_CATEGORIES:
|
|
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
|
|
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
|
|
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
|
|
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
SINGLE_CATEGORIES: ["all", "email"]
|
|
MULTIPLE_CATEGORIES:
|
|
social: ["socialnetworks", "socialmediatools"]
|
|
entertainment: ["entertainment", "gamingknowledge", "gamingcasual", "gamingadventure", "gamingstrategy", "gamingtoolscommunity", "gamingroleplaying", "gamingaction", "gaminglogic", "gamingsports", "gamingsimulation"]
|
|
SINGLE_APPS: ["top1global", "com.facebook.moments", "com.google.android.youtube", "com.twitter.android"] # There's no entropy for single apps
|
|
EXCLUDED_CATEGORIES: ["system_apps"]
|
|
EXCLUDED_APPS: ["com.fitbit.FitbitMobile", "com.aware.plugin.upmc.cancer"]
|
|
FEATURES: ["count", "timeoffirstuse", "timeoflastuse", "frequencyentropy"]
|
|
SRC_SCRIPT: src/features/phone_applications_foreground/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-applications-notifications/
|
|
PHONE_APPLICATIONS_NOTIFICATIONS:
|
|
CONTAINER: applications_notifications
|
|
APPLICATION_CATEGORIES:
|
|
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
|
|
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
|
|
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
|
|
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
|
|
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
|
|
|
|
# See https://www.rapids.science/latest/features/phone-battery/
|
|
PHONE_BATTERY:
|
|
CONTAINER: battery.csv
|
|
EPISODE_THRESHOLD_BETWEEN_ROWS: 30 # minutes. Max time difference for two consecutive rows to be considered within the same battery episode.
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
|
|
SRC_SCRIPT: src/features/phone_battery/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-bluetooth/
|
|
PHONE_BLUETOOTH:
|
|
CONTAINER: bluetooth.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
|
|
SRC_SCRIPT: src/features/phone_bluetooth/rapids/main.R
|
|
|
|
DORYAB:
|
|
COMPUTE: False
|
|
FEATURES:
|
|
ALL:
|
|
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
|
|
SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
SCANS_LEAST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
OWN:
|
|
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
|
|
SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
SCANS_LEAST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
OTHERS:
|
|
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
|
|
SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
SCANS_LEAST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
|
|
SRC_SCRIPT: src/features/phone_bluetooth/doryab/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-calls/
|
|
PHONE_CALLS:
|
|
CONTAINER: calls.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
CALL_TYPES: [missed, incoming, outgoing]
|
|
FEATURES:
|
|
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
|
|
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
|
|
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
|
|
SRC_SCRIPT: src/features/phone_calls/rapids/main.R
|
|
|
|
# See https://www.rapids.science/latest/features/phone-conversation/
|
|
PHONE_CONVERSATION:
|
|
CONTAINER:
|
|
ANDROID: plugin_studentlife_audio_android.csv
|
|
IOS: plugin_studentlife_audio.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration",
|
|
"sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","noisesumenergy",
|
|
"noiseavgenergy","noisesdenergy","noiseminenergy","noisemaxenergy","voicesumenergy",
|
|
"voiceavgenergy","voicesdenergy","voiceminenergy","voicemaxenergy","silencesensedfraction","noisesensedfraction",
|
|
"voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction",
|
|
"unknownexpectedfraction","countconversation"]
|
|
RECORDING_MINUTES: 1
|
|
PAUSED_MINUTES : 3
|
|
SRC_SCRIPT: src/features/phone_conversation/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-data-yield/
|
|
PHONE_DATA_YIELD:
|
|
SENSORS: [PHONE_ACTIVITY_RECOGNITION, PHONE_APPLICATIONS_FOREGROUND, PHONE_BATTERY, PHONE_BLUETOOTH, PHONE_CALLS, PHONE_CONVERSATION, PHONE_LIGHT, PHONE_LOCATIONS, PHONE_MESSAGES, PHONE_SCREEN, PHONE_WIFI_CONNECTED, PHONE_WIFI_VISIBLE]
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: [ratiovalidyieldedminutes, ratiovalidyieldedhours]
|
|
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS: 0.5 # 0 to 1, minimum percentage of valid minutes in an hour to be considered valid.
|
|
SRC_SCRIPT: src/features/phone_data_yield/rapids/main.R
|
|
|
|
# See https://www.rapids.science/latest/features/phone-keyboard/
|
|
PHONE_KEYBOARD:
|
|
CONTAINER: keyboard
|
|
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
|
|
|
|
# See https://www.rapids.science/latest/features/phone-light/
|
|
PHONE_LIGHT:
|
|
CONTAINER: light.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
|
|
SRC_SCRIPT: src/features/phone_light/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-locations/
|
|
PHONE_LOCATIONS:
|
|
CONTAINER: locations.csv
|
|
LOCATIONS_TO_USE: FUSED_RESAMPLED # ALL, GPS, ALL_RESAMPLED, OR FUSED_RESAMPLED
|
|
FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD: 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold
|
|
FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION: 720 # minutes, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row
|
|
HOME_INFERENCE:
|
|
DBSCAN_EPS: 10 # meters
|
|
DBSCAN_MINSAMPLES: 5
|
|
THRESHOLD_STATIC : 1 # km/h
|
|
CLUSTERING_ALGORITHM: DBSCAN #DBSCAN,OPTICS
|
|
|
|
PROVIDERS:
|
|
DORYAB:
|
|
COMPUTE: True
|
|
FEATURES: ["locationvariance","loglocationvariance","totaldistance","averagespeed","varspeed", "numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","meanlengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy","timeathome"]
|
|
ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius
|
|
DBSCAN_EPS: 10 # meters
|
|
DBSCAN_MINSAMPLES: 5
|
|
THRESHOLD_STATIC : 1 # km/h
|
|
MAXIMUM_ROW_GAP: 300
|
|
MAXIMUM_ROW_DURATION: 60
|
|
MINUTES_DATA_USED: False
|
|
CLUSTER_ON: PARTICIPANT_DATASET # PARTICIPANT_DATASET,TIME_SEGMENT
|
|
CLUSTERING_ALGORITHM: DBSCAN #DBSCAN,OPTICS
|
|
RADIUS_FOR_HOME: 100
|
|
SRC_SCRIPT: src/features/phone_locations/doryab/main.py
|
|
|
|
BARNETT:
|
|
COMPUTE: False
|
|
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
|
|
ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius
|
|
IF_MULTIPLE_TIMEZONES: USE_MOST_COMMON
|
|
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
|
|
SRC_SCRIPT: src/features/phone_locations/barnett/main.R
|
|
|
|
# See https://www.rapids.science/latest/features/phone-log/
|
|
PHONE_LOG:
|
|
CONTAINER:
|
|
ANDROID: aware_log
|
|
IOS: ios_aware_log
|
|
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
|
|
|
|
# See https://www.rapids.science/latest/features/phone-messages/
|
|
PHONE_MESSAGES:
|
|
CONTAINER: messages.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
MESSAGES_TYPES : [received, sent]
|
|
FEATURES:
|
|
received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
|
|
sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
|
|
SRC_SCRIPT: src/features/phone_messages/rapids/main.R
|
|
|
|
# See https://www.rapids.science/latest/features/phone-screen/
|
|
PHONE_SCREEN:
|
|
CONTAINER: screen.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
REFERENCE_HOUR_FIRST_USE: 0
|
|
IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable
|
|
IGNORE_EPISODES_LONGER_THAN: 0 # in minutes, set to 0 to disable
|
|
FEATURES: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"] # "episodepersensedminutes" needs to be added later
|
|
EPISODE_TYPES: ["unlock"]
|
|
SRC_SCRIPT: src/features/phone_screen/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/phone-wifi-connected/
|
|
PHONE_WIFI_CONNECTED:
|
|
CONTAINER: sensor_wifi.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
|
|
SRC_SCRIPT: src/features/phone_wifi_connected/rapids/main.R
|
|
|
|
# See https://www.rapids.science/latest/features/phone-wifi-visible/
|
|
PHONE_WIFI_VISIBLE:
|
|
CONTAINER: wifi.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
|
|
SRC_SCRIPT: src/features/phone_wifi_visible/rapids/main.R
|
|
|
|
|
|
|
|
########################################################################################################################
|
|
# FITBIT #
|
|
########################################################################################################################
|
|
|
|
# See https://www.rapids.science/latest/setup/configuration/#data-stream-configuration
|
|
FITBIT_DATA_STREAMS:
|
|
USE: fitbitjson_csv
|
|
|
|
# AVAILABLE:
|
|
fitbitjson_mysql:
|
|
DATABASE_GROUP: MY_GROUP
|
|
SLEEP_SUMMARY_EPISODE_DAY_ANCHOR: end # summary sleep episodes are considered as events based on either the start timestamp or end timestamp.
|
|
|
|
fitbitparsed_mysql:
|
|
DATABASE_GROUP: MY_GROUP
|
|
SLEEP_SUMMARY_EPISODE_DAY_ANCHOR: end # summary sleep episodes are considered as events based on either the start timestamp or end timestamp.
|
|
|
|
fitbitjson_csv:
|
|
FOLDER: data/external/example_workflow
|
|
SLEEP_SUMMARY_EPISODE_DAY_ANCHOR: end # summary sleep episodes are considered as events based on either the start timestamp or end timestamp.
|
|
|
|
fitbitparsed_csv:
|
|
FOLDER: data/external/fitbit_csv
|
|
SLEEP_SUMMARY_EPISODE_DAY_ANCHOR: end # summary sleep episodes are considered as events based on either the start timestamp or end timestamp.
|
|
|
|
# Sensors ------
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-data-yield/
|
|
FITBIT_DATA_YIELD:
|
|
SENSOR: FITBIT_HEARTRATE_INTRADAY
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: False
|
|
FEATURES: [ratiovalidyieldedminutes, ratiovalidyieldedhours]
|
|
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS: 0.5 # 0 to 1, minimum percentage of valid minutes in an hour to be considered valid.
|
|
SRC_SCRIPT: src/features/fitbit_data_yield/rapids/main.R
|
|
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-heartrate-summary/
|
|
FITBIT_HEARTRATE_SUMMARY:
|
|
CONTAINER: fitbit_data.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["maxrestinghr", "minrestinghr", "avgrestinghr", "medianrestinghr", "moderestinghr", "stdrestinghr", "diffmaxmoderestinghr", "diffminmoderestinghr", "entropyrestinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. height, weight) use these with care: ["sumcaloriesoutofrange", "maxcaloriesoutofrange", "mincaloriesoutofrange", "avgcaloriesoutofrange", "mediancaloriesoutofrange", "stdcaloriesoutofrange", "entropycaloriesoutofrange", "sumcaloriesfatburn", "maxcaloriesfatburn", "mincaloriesfatburn", "avgcaloriesfatburn", "mediancaloriesfatburn", "stdcaloriesfatburn", "entropycaloriesfatburn", "sumcaloriescardio", "maxcaloriescardio", "mincaloriescardio", "avgcaloriescardio", "mediancaloriescardio", "stdcaloriescardio", "entropycaloriescardio", "sumcaloriespeak", "maxcaloriespeak", "mincaloriespeak", "avgcaloriespeak", "mediancaloriespeak", "stdcaloriespeak", "entropycaloriespeak"]
|
|
SRC_SCRIPT: src/features/fitbit_heartrate_summary/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-heartrate-intraday/
|
|
FITBIT_HEARTRATE_INTRADAY:
|
|
CONTAINER: fitbit_data.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
|
|
SRC_SCRIPT: src/features/fitbit_heartrate_intraday/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-sleep-summary/
|
|
FITBIT_SLEEP_SUMMARY:
|
|
CONTAINER: fitbit_data.csv
|
|
SLEEP_EPISODE_TIMESTAMP: end # summary sleep episodes are considered as events based on either the start timestamp or end timestamp.
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["countepisode", "avgefficiency", "sumdurationafterwakeup", "sumdurationasleep", "sumdurationawake", "sumdurationtofallasleep", "sumdurationinbed", "avgdurationafterwakeup", "avgdurationasleep", "avgdurationawake", "avgdurationtofallasleep", "avgdurationinbed"]
|
|
SLEEP_TYPES: ["main", "nap", "all"]
|
|
SRC_SCRIPT: src/features/fitbit_sleep_summary/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-sleep-intraday/
|
|
FITBIT_SLEEP_INTRADAY:
|
|
CONTAINER: sleep_intraday
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: False
|
|
FEATURES:
|
|
LEVELS_AND_TYPES_COMBINING_ALL: True
|
|
LEVELS_AND_TYPES: [countepisode, sumduration, maxduration, minduration, avgduration, medianduration, stdduration]
|
|
RATIOS_TYPE: [count, duration]
|
|
RATIOS_SCOPE: [ACROSS_LEVELS, ACROSS_TYPES, WITHIN_LEVELS, WITHIN_TYPES]
|
|
ROUTINE: [starttimefirstmainsleep, endtimelastmainsleep, starttimefirstnap, endtimelastnap]
|
|
SLEEP_LEVELS:
|
|
CLASSIC: [awake, restless, asleep]
|
|
STAGES: [wake, deep, light, rem]
|
|
UNIFIED: [awake, asleep]
|
|
SLEEP_TYPES: [main, nap]
|
|
INCLUDE_SLEEP_LATER_THAN: 0 # a number ranged from 0 (midnight) to 1439 (23:59)
|
|
REFERENCE_TIME: MIDNIGHT # chosen from "MIDNIGHT" and "START_OF_THE_SEGMENT"
|
|
SRC_SCRIPT: src/features/fitbit_sleep_intraday/rapids/main.py
|
|
|
|
PRICE:
|
|
COMPUTE: False
|
|
FEATURES: [avgduration, avgratioduration, avgstarttimeofepisodemain, avgendtimeofepisodemain, avgmidpointofepisodemain, "stdstarttimeofepisodemain", "stdendtimeofepisodemain", "stdmidpointofepisodemain", socialjetlag, meanssdstarttimeofepisodemain, meanssdendtimeofepisodemain, meanssdmidpointofepisodemain, medianssdstarttimeofepisodemain, medianssdendtimeofepisodemain, medianssdmidpointofepisodemain]
|
|
SLEEP_LEVELS:
|
|
CLASSIC: [awake, restless, asleep]
|
|
STAGES: [wake, deep, light, rem]
|
|
UNIFIED: [awake, asleep]
|
|
DAY_TYPES: [WEEKEND, WEEK, ALL]
|
|
GROUP_EPISODES_WITHIN: # by default: today's 6pm to tomorrow's noon
|
|
START_TIME: 1080 # number of minutes after the midnight (18:00) 18*60
|
|
LENGTH: 1080 # in minutes (18 hours) 18*60
|
|
SRC_SCRIPT: src/features/fitbit_sleep_intraday/price/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-steps-summary/
|
|
FITBIT_STEPS_SUMMARY:
|
|
CONTAINER: fitbit_data.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES: ["maxsumsteps", "minsumsteps", "avgsumsteps", "mediansumsteps", "stdsumsteps"]
|
|
SRC_SCRIPT: src/features/fitbit_steps_summary/rapids/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/fitbit-steps-intraday/
|
|
FITBIT_STEPS_INTRADAY:
|
|
CONTAINER: fitbit_data.csv
|
|
PROVIDERS:
|
|
RAPIDS:
|
|
COMPUTE: True
|
|
FEATURES:
|
|
STEPS: ["sum", "max", "min", "avg", "std"]
|
|
SEDENTARY_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"]
|
|
ACTIVE_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"]
|
|
THRESHOLD_ACTIVE_BOUT: 10 # steps
|
|
INCLUDE_ZERO_STEP_ROWS: False
|
|
SRC_SCRIPT: src/features/fitbit_steps_intraday/rapids/main.py
|
|
|
|
########################################################################################################################
|
|
# EMPATICA #
|
|
########################################################################################################################
|
|
|
|
EMPATICA_DATA_STREAMS:
|
|
USE: empatica_zip
|
|
|
|
# AVAILABLE:
|
|
empatica_zip:
|
|
FOLDER: data/external/empatica
|
|
|
|
# Sensors ------
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-accelerometer/
|
|
EMPATICA_ACCELEROMETER:
|
|
CONTAINER: ACC
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
|
SRC_SCRIPT: src/features/empatica_accelerometer/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-heartrate/
|
|
EMPATICA_HEARTRATE:
|
|
CONTAINER: HR
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr"]
|
|
SRC_SCRIPT: src/features/empatica_heartrate/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-temperature/
|
|
EMPATICA_TEMPERATURE:
|
|
CONTAINER: TEMP
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxtemp", "mintemp", "avgtemp", "mediantemp", "modetemp", "stdtemp", "diffmaxmodetemp", "diffminmodetemp", "entropytemp"]
|
|
SRC_SCRIPT: src/features/empatica_temperature/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-electrodermal-activity/
|
|
EMPATICA_ELECTRODERMAL_ACTIVITY:
|
|
CONTAINER: EDA
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda", "diffminmodeeda", "entropyeda"]
|
|
SRC_SCRIPT: src/features/empatica_electrodermal_activity/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-blood-volume-pulse/
|
|
EMPATICA_BLOOD_VOLUME_PULSE:
|
|
CONTAINER: BVP
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxbvp", "minbvp", "avgbvp", "medianbvp", "modebvp", "stdbvp", "diffmaxmodebvp", "diffminmodebvp", "entropybvp"]
|
|
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-inter-beat-interval/
|
|
EMPATICA_INTER_BEAT_INTERVAL:
|
|
CONTAINER: IBI
|
|
PROVIDERS:
|
|
DBDP:
|
|
COMPUTE: False
|
|
FEATURES: ["maxibi", "minibi", "avgibi", "medianibi", "modeibi", "stdibi", "diffmaxmodeibi", "diffminmodeibi", "entropyibi"]
|
|
SRC_SCRIPT: src/features/empatica_inter_beat_interval/dbdp/main.py
|
|
|
|
# See https://www.rapids.science/latest/features/empatica-tags/
|
|
EMPATICA_TAGS:
|
|
CONTAINER: TAGS
|
|
PROVIDERS: # None implemented yet
|
|
|
|
|
|
########################################################################################################################
|
|
# PLOTS #
|
|
########################################################################################################################
|
|
|
|
# Data quality ------
|
|
|
|
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#1-histograms-of-phone-data-yield
|
|
HISTOGRAM_PHONE_DATA_YIELD:
|
|
PLOT: True
|
|
|
|
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#2-heatmaps-of-overall-data-yield
|
|
HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT:
|
|
PLOT: True
|
|
TIME: RELATIVE_TIME # ABSOLUTE_TIME or RELATIVE_TIME
|
|
|
|
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#3-heatmap-of-recorded-phone-sensors
|
|
HEATMAP_SENSORS_PER_MINUTE_PER_TIME_SEGMENT:
|
|
PLOT: True
|
|
|
|
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#4-heatmap-of-sensor-row-count
|
|
HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT:
|
|
PLOT: True
|
|
SENSORS: [PHONE_ACTIVITY_RECOGNITION, PHONE_APPLICATIONS_FOREGROUND, PHONE_BATTERY, PHONE_BLUETOOTH, PHONE_CALLS, PHONE_CONVERSATION, PHONE_LIGHT, PHONE_LOCATIONS, PHONE_MESSAGES, PHONE_SCREEN, PHONE_WIFI_CONNECTED, PHONE_WIFI_VISIBLE]
|
|
|
|
# Features ------
|
|
|
|
# See https://www.rapids.science/latest/visualizations/feature-visualizations/#1-heatmap-correlation-matrix
|
|
HEATMAP_FEATURE_CORRELATION_MATRIX:
|
|
PLOT: True
|
|
MIN_ROWS_RATIO: 0.5
|
|
CORR_THRESHOLD: 0.1
|
|
CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"}
|
|
|
|
|
|
|
|
########################################################################################################################
|
|
# Analysis Workflow Example #
|
|
########################################################################################################################
|
|
|
|
PARAMS_FOR_ANALYSIS:
|
|
CATEGORICAL_OPERATORS: [mostcommon]
|
|
|
|
DEMOGRAPHIC:
|
|
FOLDER: data/external/example_workflow
|
|
CONTAINER: participant_info.csv
|
|
FEATURES: [age, gender, inpatientdays]
|
|
CATEGORICAL_FEATURES: [gender]
|
|
|
|
TARGET:
|
|
FOLDER: data/external/example_workflow
|
|
CONTAINER: participant_target.csv
|
|
|
|
# Cleaning Parameters
|
|
COLS_NAN_THRESHOLD: 0.3
|
|
COLS_VAR_THRESHOLD: True
|
|
ROWS_NAN_THRESHOLD: 0.3
|
|
DATA_YIELDED_HOURS_RATIO_THRESHOLD: 0.75
|
|
|
|
MODEL_NAMES: [LogReg, kNN , SVM, DT, RF, GB, XGBoost, LightGBM]
|
|
CV_METHODS: [LeaveOneOut]
|
|
RESULT_COMPONENTS: [fold_predictions, fold_metrics, overall_results, fold_feature_importances]
|
|
|
|
MODEL_SCALER:
|
|
LogReg: [notnormalized, minmaxscaler, standardscaler, robustscaler]
|
|
kNN: [minmaxscaler, standardscaler, robustscaler]
|
|
SVM: [minmaxscaler, standardscaler, robustscaler]
|
|
DT: [notnormalized]
|
|
RF: [notnormalized]
|
|
GB: [notnormalized]
|
|
XGBoost: [notnormalized]
|
|
LightGBM: [notnormalized]
|
|
|
|
MODEL_HYPERPARAMS:
|
|
LogReg:
|
|
{"clf__C": [0.01, 0.1, 1, 10, 100], "clf__solver": ["newton-cg", "lbfgs", "liblinear", "saga"], "clf__penalty": ["l2"]}
|
|
kNN:
|
|
{"clf__n_neighbors": [3, 5, 7], "clf__weights": ["uniform", "distance"], "clf__metric": ["euclidean", "manhattan", "minkowski"]}
|
|
SVM:
|
|
{"clf__C": [0.01, 0.1, 1, 10, 100], "clf__gamma": ["scale", "auto"], "clf__kernel": ["rbf", "poly", "sigmoid"]}
|
|
DT:
|
|
{"clf__criterion": ["gini", "entropy"], "clf__max_depth": [null, 3, 7, 15], "clf__max_features": [null, "auto", "sqrt", "log2"]}
|
|
RF:
|
|
{"clf__n_estimators": [10, 100, 200],"clf__max_depth": [null, 3, 7, 15]}
|
|
GB:
|
|
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [10, 100, 200], "clf__subsample": [0.5, 0.7, 1.0], "clf__max_depth": [null, 3, 5, 7]}
|
|
XGBoost:
|
|
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [10, 100, 200], "clf__max_depth": [3, 5, 7]}
|
|
LightGBM:
|
|
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [10, 100, 200], "clf__num_leaves": [3, 5, 7], "clf__colsample_bytree": [0.6, 0.8, 1]}
|