rapids/rules/models.snakefile

70 lines
3.5 KiB
Plaintext

def input_merge_metrics_of_single_participant(wildcards):
if wildcards.source == "phone_fitbit_metrics":
return expand("data/processed/{pid}/{metrics}_{day_segment}.csv", pid=wildcards.pid, metrics=config["METRICS_FOR_ANALYSIS"]["PHONE_METRICS"] + config["METRICS_FOR_ANALYSIS"]["FITBIT_METRICS"], day_segment=wildcards.day_segment)
else:
return expand("data/processed/{pid}/{metrics}_{day_segment}.csv", pid=wildcards.pid, metrics=config["METRICS_FOR_ANALYSIS"][wildcards.source.upper()], day_segment=wildcards.day_segment)
def optional_input_days_to_include(wildcards):
if config["METRICS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["ENABLED"]:
# This input automatically trigers the rule days_to_analyse in mystudy.snakefile
return ["data/interim/{pid}/days_to_analyse" + \
"_" + str(config["METRICS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_BEFORE_SURGERY"]) + \
"_" + str(config["METRICS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_IN_HOSPITAL"]) + \
"_" + str(config["METRICS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_AFTER_DISCHARGE"]) + ".csv"]
else:
return []
def optional_input_valid_sensed_days(wildcards):
if config["METRICS_FOR_ANALYSIS"]["DROP_VALID_SENSED_DAYS"]["ENABLED"]:
# This input automatically trigers the rule phone_valid_sensed_days in preprocessing.snakefile
return ["data/interim/{pid}/phone_valid_sensed_days.csv"]
else:
return []
rule merge_metrics_for_individual_model:
input:
metric_files = input_merge_metrics_of_single_participant,
phone_valid_sensed_days = optional_input_valid_sensed_days,
days_to_include = optional_input_days_to_include
params:
source = "{source}"
output:
"data/processed/{pid}/metrics_for_individual_model/{source}_{day_segment}_original.csv"
script:
"../src/models/merge_metrics_for_individual_model.R"
rule merge_metrics_for_population_model:
input:
metric_files = expand("data/processed/{pid}/metrics_for_individual_model/{{source}}_{{day_segment}}_original.csv", pid=config["PIDS"])
output:
"data/processed/metrics_for_population_model/{source}_{day_segment}_original.csv"
script:
"../src/models/merge_metrics_for_population_model.R"
rule clean_metrics_for_individual_model:
input:
rules.merge_metrics_for_individual_model.output
params:
cols_nan_threshold = config["METRICS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
cols_var_threshold = config["METRICS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
rows_nan_threshold = config["METRICS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
participants_day_threshold = config["METRICS_FOR_ANALYSIS"]["PARTICIPANTS_DAY_THRESHOLD"]
output:
"data/processed/{pid}/metrics_for_individual_model/{source}_{day_segment}_clean.csv"
script:
"../src/models/clean_metrics_for_model.R"
rule clean_metrics_for_population_model:
input:
rules.merge_metrics_for_population_model.output
params:
cols_nan_threshold = config["METRICS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
cols_var_threshold = config["METRICS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
rows_nan_threshold = config["METRICS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
participants_day_threshold = config["METRICS_FOR_ANALYSIS"]["PARTICIPANTS_DAY_THRESHOLD"]
output:
"data/processed/metrics_for_population_model/{source}_{day_segment}_clean.csv"
script:
"../src/models/clean_metrics_for_model.R"