82 lines
3.9 KiB
Python
82 lines
3.9 KiB
Python
rule histogram_phone_data_yield:
|
|
input:
|
|
"data/processed/features/all_participants/all_sensor_features.csv"
|
|
params:
|
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"]
|
|
output:
|
|
"reports/data_exploration/histogram_phone_data_yield.html"
|
|
script:
|
|
"../src/visualization/histogram_phone_data_yield.py"
|
|
|
|
rule heatmap_sensors_per_minute_per_time_segment:
|
|
input:
|
|
phone_data_yield = "data/interim/{pid}/phone_yielded_timestamps_with_datetime.csv",
|
|
participant_file = "data/external/participant_files/{pid}.yaml",
|
|
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
|
params:
|
|
pid = "{pid}",
|
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"]
|
|
output:
|
|
"reports/interim/{pid}/heatmap_sensors_per_minute_per_time_segment.html"
|
|
script:
|
|
"../src/visualization/heatmap_sensors_per_minute_per_time_segment.py"
|
|
|
|
rule merge_heatmap_sensors_per_minute_per_time_segment:
|
|
input:
|
|
heatmap_sensors_per_minute_per_time_segment = expand("reports/interim/{pid}/heatmap_sensors_per_minute_per_time_segment.html", pid=config["PIDS"])
|
|
output:
|
|
"reports/data_exploration/heatmap_sensors_per_minute_per_time_segment.html"
|
|
script:
|
|
"../src/visualization/merge_heatmap_sensors_per_minute_per_time_segment.Rmd"
|
|
|
|
rule heatmap_sensor_row_count_per_time_segment:
|
|
input:
|
|
all_sensors = expand("data/raw/{{pid}}/{sensor}_with_datetime.csv", sensor = map(str.lower, config["HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT"]["SENSORS"])),
|
|
phone_data_yield = "data/processed/features/{pid}/phone_data_yield.csv",
|
|
participant_file = "data/external/participant_files/{pid}.yaml",
|
|
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
|
params:
|
|
pid = "{pid}",
|
|
sensor_names = config["HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT"]["SENSORS"],
|
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"]
|
|
output:
|
|
"reports/interim/{pid}/heatmap_sensor_row_count_per_time_segment.html"
|
|
script:
|
|
"../src/visualization/heatmap_sensor_row_count_per_time_segment.py"
|
|
|
|
rule merge_heatmap_sensor_row_count_per_time_segment:
|
|
input:
|
|
heatmap_sensor_row_count_per_time_segment = expand("reports/interim/{pid}/heatmap_sensor_row_count_per_time_segment.html", pid=config["PIDS"])
|
|
output:
|
|
"reports/data_exploration/heatmap_sensor_row_count_per_time_segment.html"
|
|
script:
|
|
"../src/visualization/merge_heatmap_sensor_row_count_per_time_segment.Rmd"
|
|
|
|
rule heatmap_phone_data_yield_per_participant_per_time_segment:
|
|
input:
|
|
participant_files = expand("data/external/participant_files/{pid}.yaml", pid=config["PIDS"]),
|
|
time_segments_file = config["TIME_SEGMENTS"]["FILE"],
|
|
phone_data_yield = "data/processed/features/all_participants/all_sensor_features.csv",
|
|
params:
|
|
pids = config["PIDS"],
|
|
time = config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["TIME"],
|
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"]
|
|
output:
|
|
"reports/data_exploration/heatmap_phone_data_yield_per_participant_per_time_segment.html"
|
|
script:
|
|
"../src/visualization/heatmap_phone_data_yield_per_participant_per_time_segment.py"
|
|
|
|
rule heatmap_feature_correlation_matrix:
|
|
input:
|
|
all_sensor_features = "data/processed/features/all_participants/all_sensor_features.csv" # before data cleaning
|
|
params:
|
|
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
|
|
min_rows_ratio = config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["MIN_ROWS_RATIO"],
|
|
corr_threshold = config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["CORR_THRESHOLD"],
|
|
corr_method = config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["CORR_METHOD"]
|
|
output:
|
|
"reports/data_exploration/heatmap_feature_correlation_matrix.html"
|
|
script:
|
|
"../src/visualization/heatmap_feature_correlation_matrix.py"
|
|
|