Go to file
Meng Li 76888b412d Add label and dates for external files 2020-02-18 16:41:10 -05:00
data Add category (genre) to foreground apps 2020-01-15 18:28:56 -05:00
docs Add apps_foreground, hr and step to extracted.rst 2020-02-11 18:42:49 -05:00
models First commit 2019-10-22 13:11:01 -04:00
notebooks First commit 2019-10-22 13:11:01 -04:00
packrat Add call features 2019-10-25 10:21:09 -04:00
references First commit 2019-10-22 13:11:01 -04:00
reports First commit 2019-10-22 13:11:01 -04:00
rules Add label and dates for external files 2020-02-18 16:41:10 -05:00
src Add label and dates for external files 2020-02-18 16:41:10 -05:00
.gitignore Add category (genre) to foreground apps 2020-01-15 18:28:56 -05:00
LICENSE First commit 2019-10-22 13:11:01 -04:00
Makefile First commit 2019-10-22 13:11:01 -04:00
README.md First commit 2019-10-22 13:11:01 -04:00
Snakefile Add applications_foreground features 2020-02-07 11:52:55 -05:00
config.yaml Add download_participants functionality 2020-02-10 16:45:34 -05:00
environment.yml Remove libgfortran version 2019-12-02 15:15:56 -05:00
setup.py First commit 2019-10-22 13:11:01 -04:00
test_environment.py First commit 2019-10-22 13:11:01 -04:00
tox.ini First commit 2019-10-22 13:11:01 -04:00

README.md

moshi-aware

Data cleaning, feature engineering and analysis for Aware sensors

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience