rapids/tests/scripts/zero_vals.py

49 lines
2.0 KiB
Python

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from itertools import compress
participant = "p031"
sensor = "eda"
if sensor == "eda":
path = f"/rapids/data/interim/{participant}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_cr_windows.csv"
elif sensor == "bvp":
path = f"/rapids/data/interim/{participant}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_cr_windows.csv"
elif sensor == "ibi":
path = f"/rapids/data/interim/{participant}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_cr_windows.csv"
elif sensor == "acc":
path = f"/rapids/data/interim/{participant}/empatica_accelerometer_features/empatica_accelerometer_python_cr_windows.csv"
elif sensor == "temp":
path = f"/rapids/data/interim/{participant}/empatica_temperature_features/empatica_temperature_python_cr_windows.csv"
else:
path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv" # all features all participants"
df = pd.read_csv(path)
df_num_peaks_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] == 0]
columns_num_peaks_zero = df_num_peaks_zero.columns[df_num_peaks_zero.isna().any()].tolist()
df_num_peaks_non_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] != 0]
df_num_peaks_non_zero = df_num_peaks_non_zero[columns_num_peaks_zero]
pd.set_option('display.max_columns', None)
df_q = pd.DataFrame()
for col in df_num_peaks_non_zero:
df_q[col] = pd.to_numeric(pd.cut(df_num_peaks_non_zero[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q)
plt.savefig(f'eda_{participant}_window_non_zero_peak_other_vals.png', bbox_inches='tight')
plt.close()
# Filter columns that do not contain 0
non_zero_cols = list(compress(columns_num_peaks_zero, df_num_peaks_non_zero.all().tolist()))
zero_cols = list(set(columns_num_peaks_zero) - set(non_zero_cols))
print(non_zero_cols, "\n")
print(zero_cols)