rapids/src/features/bluetooth_metrics.R

41 lines
1.5 KiB
R

source("packrat/init.R")
library(dplyr)
filter_by_day_segment <- function(data, day_segment) {
if(day_segment %in% c("morning", "afternoon", "evening", "night"))
data <- data %>% filter(local_day_segment == day_segment)
return(data %>% group_by(local_date))
}
compute_bluetooth_metric <- function(data, metric, day_segment){
if(metric %in% c("countscans", "uniquedevices")){
data <- data %>% filter_by_day_segment(day_segment)
data <- switch(metric,
"countscans" = data %>% summarise(!!paste("bluetooth", day_segment, metric, sep = "_") := n()),
"uniquedevices" = data %>% summarise(!!paste("bluetooth", day_segment, metric, sep = "_") := n_distinct(bt_address)))
return(data)
} else if(metric == "countscansmostuniquedevice"){
# Get the most scanned device
data <- data %>% group_by(bt_address) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N))
return(data %>%
filter_by_day_segment(day_segment) %>%
summarise(!!paste("bluetooth", day_segment, metric, sep = "_") := n()))
}
}
data <- read.csv(snakemake@input[[1]], stringsAsFactors = FALSE)
day_segment <- snakemake@params[["day_segment"]]
metrics <- snakemake@params[["metrics"]]
features = data.frame(local_date = character(), stringsAsFactors = FALSE)
for(metric in metrics){
feature <- compute_bluetooth_metric(data, metric, day_segment)
features <- merge(features, feature, by="local_date", all = TRUE)
}
write.csv(features, snakemake@output[[1]], row.names = FALSE)