107 lines
4.1 KiB
Python
107 lines
4.1 KiB
Python
import unittest
|
|
import yaml
|
|
import sys
|
|
import os
|
|
import pandas as pd
|
|
from snakemake.io import expand
|
|
|
|
class RapidsTests(unittest.TestCase):
|
|
unittest.TestLoader.sortTestMethodsUsing = lambda self, a, b: (a < b) - (a > b)
|
|
|
|
def generate_sensor_file_lists(self):
|
|
# Go through the configs and select those sensors with COMPUTE = True.
|
|
# Also get TIME_SEGMENTS, then create expected
|
|
# files. Return dictionary with list of file paths of expected and
|
|
# actual files for each sensor listed in the config file. Added for Travis.
|
|
|
|
# Initialize string of file path for both expected and actual metric values
|
|
segment = self.configs['TIME_SEGMENTS']['TYPE'].lower()
|
|
act_str = "data/processed/features/{pid}/{sensor_key}.csv"
|
|
exp_str = "tests/data/processed/features/"+segment+"/{pid}/{sensor_key}.csv"
|
|
|
|
# Build list of sensors to be tested.
|
|
sensors = []
|
|
for sensor in self.configs:
|
|
if "PROVIDERS" in self.configs[sensor] and self.configs[sensor]["PROVIDERS"] is not None:
|
|
for provider in self.configs[sensor]["PROVIDERS"]:
|
|
if self.configs[sensor]["PROVIDERS"][provider]["COMPUTE"]:
|
|
sensors.append(sensor.lower())
|
|
|
|
act_file_list = expand(act_str,pid=self.configs["PIDS"],sensor_key = sensors)
|
|
exp_file_list = expand(exp_str, pid=self.configs["PIDS"],sensor_key = sensors)
|
|
sensor_file_lists = list(zip(act_file_list,exp_file_list))
|
|
|
|
return sensor_file_lists
|
|
|
|
def test_sensors_files_exist(self):
|
|
# Loop through the file_list dictionary and check if the files exist.
|
|
file_lists = self.generate_sensor_file_lists()
|
|
for each in file_lists:
|
|
print("The actual output file should exist: {}".format(each[0]))
|
|
self.assertEqual(os.path.exists( each[0]), 1)
|
|
|
|
|
|
def test_sensors_features_calculations(self):
|
|
sensor_file_list = self.generate_sensor_file_lists()
|
|
for act_result, exp_result in sensor_file_list:
|
|
df_act = pd.read_csv(act_result)
|
|
df_exp = pd.read_csv(exp_result)
|
|
if df_act.empty:
|
|
print(act_result)
|
|
print("The expected output should be empty: {}".format(exp_result))
|
|
self.assertTrue(df_exp.empty)
|
|
else:
|
|
# The order in which the columns varies from time to time so
|
|
# the columns are sorted before doing the comparision
|
|
print("Comparing: {} and {}".format(act_result, exp_result))
|
|
df_exp = df_exp.reindex(sorted(df_exp.columns), axis=1)
|
|
df_act = df_act.reindex(sorted(df_act.columns), axis=1)
|
|
pd.testing.assert_frame_equal(df_exp, df_act, obj=df_exp)
|
|
|
|
|
|
class TestFrequency(RapidsTests):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# Runs once to Setup env
|
|
# global configs
|
|
with open(r'tests/settings/frequency_config.yaml') as file:
|
|
cls.configs = yaml.full_load(file)
|
|
|
|
|
|
class TestPeriodic(RapidsTests):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# Runs once to Setup env
|
|
# global configs
|
|
with open(r'tests/settings/periodic_config.yaml') as file:
|
|
cls.configs = yaml.full_load(file)
|
|
|
|
class TestEvent(RapidsTests):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# Runs once to Setup env
|
|
# global configs
|
|
with open(r'tests/settings/event_config.yaml') as file:
|
|
cls.configs = yaml.full_load(file)
|
|
|
|
|
|
def run_some_tests(test_type):
|
|
# Run only the tests in the specified classes
|
|
if test_type == "frequency":
|
|
test_class = TestFrequency
|
|
elif test_type == "periodic":
|
|
test_class = TestPeriodic
|
|
elif test_type == "event":
|
|
test_class = TestEvent
|
|
else:
|
|
raise ValueError("Only frequency or periodic are valid arguments")
|
|
loader = unittest.TestLoader()
|
|
|
|
suite = loader.loadTestsFromTestCase(test_class)
|
|
big_suite = unittest.TestSuite(suite)
|
|
runner = unittest.TextTestRunner()
|
|
results = runner.run(big_suite)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_some_tests(sys.argv[1]) |