rapids/rules/preprocessing.smk

253 lines
11 KiB
Python

rule create_example_participant_files:
output:
expand("data/external/participant_files/{pid}.yaml", pid = ["example01", "example02"])
shell:
"echo 'PHONE:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n PLATFORMS: [android]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example01.yaml && echo 'PHONE:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n PLATFORMS: [ios]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example02.yaml"
rule query_usernames_device_empatica_ids:
params:
baseline_folder = "/mnt/e/STRAWbaseline/"
output:
usernames_file = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"],
timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
script:
"../../participants/prepare_usernames_file.py"
rule prepare_tzcodes_file:
input:
timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
output:
tzcodes_file = config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"]
script:
"../tools/create_multi_timezones_file.py"
rule prepare_participants_csv:
input:
username_list = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"]
params:
data_configuration = config["PHONE_DATA_STREAMS"][config["PHONE_DATA_STREAMS"]["USE"]],
participants_table = "participants",
device_id_table = "esm",
start_end_date_table = "esm"
output:
participants_file = config["CREATE_PARTICIPANT_FILES"]["CSV_FILE_PATH"]
script:
"../src/data/translate_usernames_into_participants_data.R"
rule create_participants_files:
input:
participants_file = config["CREATE_PARTICIPANT_FILES"]["CSV_FILE_PATH"]
params:
config = config["CREATE_PARTICIPANT_FILES"]
script:
"../src/data/create_participants_files.R"
rule pull_phone_data:
input: unpack(pull_phone_data_input_with_mutation_scripts)
params:
data_configuration = config["PHONE_DATA_STREAMS"][config["PHONE_DATA_STREAMS"]["USE"]],
sensor = "phone_" + "{sensor}",
tables = lambda wildcards: config["PHONE_" + str(wildcards.sensor).upper()]["CONTAINER"],
output:
"data/raw/{pid}/phone_{sensor}_raw.csv"
script:
"../src/data/streams/pull_phone_data.R"
rule process_time_segments:
input:
segments_file = config["TIME_SEGMENTS"]["FILE"],
participant_file = "data/external/participant_files/{pid}.yaml"
params:
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
pid = "{pid}"
output:
segments_file = "data/interim/time_segments/{pid}_time_segments.csv",
segments_labels_file = "data/interim/time_segments/{pid}_time_segments_labels.csv",
script:
"../src/data/datetime/process_time_segments.R"
rule phone_readable_datetime:
input:
sensor_input = "data/raw/{pid}/phone_{sensor}_raw.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "phone",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/phone_{sensor}_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule phone_yielded_timestamps:
input:
all_sensors = expand("data/raw/{{pid}}/{sensor}_raw.csv", sensor = map(str.lower, config["PHONE_DATA_YIELD"]["SENSORS"]))
params:
sensors = config["PHONE_DATA_YIELD"]["SENSORS"] # not used but needed so the rule is triggered if this array changes
output:
"data/interim/{pid}/phone_yielded_timestamps.csv"
script:
"../src/data/phone_yielded_timestamps.R"
rule phone_yielded_timestamps_with_datetime:
input:
sensor_input = "data/interim/{pid}/phone_yielded_timestamps.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "phone",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/interim/{pid}/phone_yielded_timestamps_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule unify_ios_android:
input:
sensor_data = "data/raw/{pid}/{sensor}_with_datetime.csv",
participant_info = "data/external/participant_files/{pid}.yaml"
params:
sensor = "{sensor}",
output:
"data/raw/{pid}/{sensor}_with_datetime_unified.csv"
script:
"../src/data/unify_ios_android.R"
rule process_phone_locations_types:
input:
locations = "data/raw/{pid}/phone_locations_raw.csv",
phone_sensed_timestamps = optional_phone_yield_input_for_locations,
params:
consecutive_threshold = config["PHONE_LOCATIONS"]["FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD"],
time_since_valid_location = config["PHONE_LOCATIONS"]["FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION"],
locations_to_use = config["PHONE_LOCATIONS"]["LOCATIONS_TO_USE"],
accuracy_limit = config["PHONE_LOCATIONS"]["ACCURACY_LIMIT"]
output:
"data/interim/{pid}/phone_locations_processed.csv"
script:
"../src/data/process_location_types.R"
rule phone_locations_processed_with_datetime:
input:
sensor_input = "data/interim/{pid}/phone_locations_processed.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "phone",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/interim/{pid}/phone_locations_processed_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule resample_episodes:
input:
"data/interim/{pid}/{sensor}_episodes.csv"
output:
"data/interim/{pid}/{sensor}_episodes_resampled.csv"
script:
"../src/features/utils/resample_episodes.R"
rule resample_episodes_with_datetime:
input:
sensor_input = "data/interim/{pid}/{sensor}_episodes_resampled.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = lambda wildcards: wildcards.sensor.split("_")[0],
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/interim/{pid}/{sensor}_episodes_resampled_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule phone_application_categories:
input:
"data/raw/{pid}/phone_applications_{type}_with_datetime.csv"
params:
catalogue_source = lambda wildcards: config["PHONE_APPLICATIONS_" + str(wildcards.type).upper()]["APPLICATION_CATEGORIES"]["CATALOGUE_SOURCE"],
catalogue_file = lambda wildcards: config["PHONE_APPLICATIONS_" + str(wildcards.type).upper()]["APPLICATION_CATEGORIES"]["CATALOGUE_FILE"],
update_catalogue_file = lambda wildcards: config["PHONE_APPLICATIONS_" + str(wildcards.type).upper()]["APPLICATION_CATEGORIES"]["UPDATE_CATALOGUE_FILE"],
scrape_missing_genres = lambda wildcards: config["PHONE_APPLICATIONS_" + str(wildcards.type).upper()]["APPLICATION_CATEGORIES"]["SCRAPE_MISSING_CATEGORIES"]
output:
"data/raw/{pid}/phone_applications_{type}_with_datetime_with_categories.csv"
script:
"../src/data/application_categories.R"
rule pull_wearable_data:
input: unpack(pull_wearable_data_input_with_mutation_scripts)
params:
data_configuration = lambda wildcards: config[wildcards.device_type.upper() +"_DATA_STREAMS"][config[wildcards.device_type.upper() +"_DATA_STREAMS"]["USE"]],
device_type = "{device_type}",
sensor = "{device_type}" + "_" + "{sensor}",
pid = "{pid}",
tables = lambda wildcards: config[wildcards.device_type.upper() + "_" + str(wildcards.sensor).upper()]["CONTAINER"],
wildcard_constraints:
device_type="(empatica|fitbit)"
output:
"data/raw/{pid}/{device_type}_{sensor}_raw.csv"
script:
"../src/data/streams/pull_wearable_data.R"
rule fitbit_readable_datetime:
input:
sensor_input = "data/raw/{pid}/fitbit_{sensor}_raw.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "fitbit",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/fitbit_{sensor}_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule fitbit_steps_intraday_exclude_sleep:
input:
sensor_data = "data/raw/{pid}/fitbit_steps_intraday_with_datetime.csv",
sleep_data = optional_steps_sleep_input
params:
exclude_sleep = config["FITBIT_STEPS_INTRADAY"]["EXCLUDE_SLEEP"]
output:
"data/interim/{pid}/fitbit_steps_intraday_with_datetime_exclude_sleep.csv"
script:
"../src/data/fitbit_steps_intraday_exclude_sleep.py"
rule empatica_readable_datetime:
input:
sensor_input = "data/raw/{pid}/empatica_{sensor}_raw.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "empatica",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"