# Participants to include in the analysis # You must create a participant file per person manually or automatically (see PARTICIPANT_FILES below) PIDS: [test01] # Use tz codes from https://en.wikipedia.org/wiki/List_of_tz_database_time_zones. Double check your code, for example EST is not US Eastern Time. TIMEZONE: &timezone America/New_York DATABASE_GROUP: &database_group MY_GROUP # To create your participant files from the aware_device table or a csv file change config below and run 'snakemake -j1 create_participants_files' CREATE_PARTICIPANT_FILES: SOURCE: TYPE: AWARE_DEVICE_TABLE #AWARE_DEVICE_TABLE or CSV_FILE DATABASE_GROUP: *database_group CSV_FILE_PATH: "data/external/example_participants.csv" # must have columns: PHONE DEVICE_ID_COLUMN, FITBIT DEVICE_ID_COLUMN, pid , label, start_date, end_date TIMEZONE: *timezone # only used for AWARE_DEVICE_TABLE PHONE_SECTION: ADD: TRUE DEVICE_ID_COLUMN: device_id # column name IGNORED_DEVICE_IDS: [] FITBIT_SECTION: ADD: TRUE DEVICE_ID_COLUMN: device_id # column name IGNORED_DEVICE_IDS: [] DAY_SEGMENTS: &day_segments TYPE: PERIODIC # FREQUENCY, PERIODIC, EVENT FILE: "data/external/daysegments_periodic.csv" INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE # Only relevant if TYPE=PERIODIC, if set to TRUE we consider day segments back enough in the past as to include the first day of data SENSOR_DATA: PHONE: SOURCE: TYPE: DATABASE DATABASE_GROUP: *database_group DEVICE_ID_COLUMN: device_id # column name TIMEZONE: TYPE: SINGLE # SINGLE or MULTIPLE VALUE: *timezone # IF TYPE=SINGLE, timezone code (e.g. America/New_York, see attribute TIMEZONE above). If TYPE=MULTIPLE, a table in your database with two columns (timestamp, timezone) where timestamp is a unix timestamp and timezone is one of https://en.wikipedia.org/wiki/List_of_tz_database_time_zones FITBIT: SOURCE: TYPE: DATABASE # DATABASE or FILES (set each FITBIT_SENSOR TABLE attribute accordingly with a table name or a file path) DATABASE_GROUP: *database_group DEVICE_ID_COLUMN: device_id # column name TIMEZONE: TYPE: SINGLE # Fitbit only supports SINGLE timezones VALUE: *timezone # timezone code (e.g. America/New_York, see attribute TIMEZONE above and https://en.wikipedia.org/wiki/List_of_tz_database_time_zones) ############## PHONE ########################################################### ################################################################################ PHONE_VALID_SENSED_BINS: COMPUTE: False # This flag is automatically ignored (set to True) if you are extracting PHONE_VALID_SENSED_DAYS or screen or Barnett's location features BIN_SIZE: &bin_size 5 # (in minutes) # Add as many PHONE sensors as you have, they all improve the computation of PHONE_VALID_SENSED_BINS and PHONE_VALID_SENSED_DAYS. # If you are extracting screen or Barnett/Doryab location features, PHONE_SCREEN and PHONE_LOCATIONS tables are mandatory. # You can choose any of the keys shown below, just make sure its TABLE exists in your database! # PHONE_MESSAGES, PHONE_CALLS, PHONE_LOCATIONS, PHONE_BLUETOOTH, PHONE_ACTIVITY_RECOGNITION, PHONE_BATTERY, PHONE_SCREEN, PHONE_LIGHT, # PHONE_ACCELEROMETER, PHONE_APPLICATIONS_FOREGROUND, PHONE_WIFI_VISIBLE, PHONE_WIFI_CONNECTED, PHONE_CONVERSATION PHONE_SENSORS: [] PHONE_VALID_SENSED_DAYS: COMPUTE: False MIN_VALID_HOURS_PER_DAY: &min_valid_hours_per_day [16] # (out of 24) MIN_HOURS_PER_DAY MIN_VALID_BINS_PER_HOUR: &min_valid_bins_per_hour [6] # (out of 60min/BIN_SIZE bins) # Communication SMS features config, TYPES and FEATURES keys need to match PHONE_MESSAGES: TABLE: messages PROVIDERS: RAPIDS: COMPUTE: False MESSAGES_TYPES : [received, sent] FEATURES: received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact] sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact] SRC_LANGUAGE: "r" SRC_FOLDER: "rapids" # inside src/features/phone_messages # Communication call features config, TYPES and FEATURES keys need to match PHONE_CALLS: TABLE: calls PROVIDERS: RAPIDS: COMPUTE: False CALL_TYPES: [missed, incoming, outgoing] FEATURES: missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact] incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact] outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact] SRC_LANGUAGE: "r" SRC_FOLDER: "rapids" # inside src/features/phone_calls PHONE_LOCATIONS: TABLE: locations LOCATIONS_TO_USE: FUSED_RESAMPLED # ALL, GPS OR FUSED_RESAMPLED FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD: 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION: 720 # minutes, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row PROVIDERS: DORYAB: COMPUTE: False FEATURES: ["locationvariance","loglocationvariance","totaldistance","averagespeed","varspeed","circadianmovement","numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","meanlengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy"] DBSCAN_EPS: 10 # meters DBSCAN_MINSAMPLES: 5 THRESHOLD_STATIC : 1 # km/h MAXIMUM_GAP_ALLOWED: 300 MINUTES_DATA_USED: False SAMPLING_FREQUENCY: 0 SRC_FOLDER: "doryab" # inside src/features/phone_locations SRC_LANGUAGE: "python" BARNETT: COMPUTE: False FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"] ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius TIMEZONE: *timezone MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features SRC_FOLDER: "barnett" # inside src/features/phone_locations SRC_LANGUAGE: "r" PHONE_BLUETOOTH: TABLE: bluetooth PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"] SRC_FOLDER: "rapids" # inside src/features/phone_bluetooth SRC_LANGUAGE: "r" PHONE_ACTIVITY_RECOGNITION: TABLE: ANDROID: plugin_google_activity_recognition IOS: plugin_ios_activity_recognition EPISODE_THRESHOLD_BETWEEN_ROWS: 5 # minutes. Max time difference for two consecutive rows to be considered within the same battery episode. PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["count", "mostcommonactivity", "countuniqueactivities", "durationstationary", "durationmobile", "durationvehicle"] ACTIVITY_CLASSES: STATIONARY: ["still", "tilting"] MOBILE: ["on_foot", "walking", "running", "on_bicycle"] VEHICLE: ["in_vehicle"] SRC_FOLDER: "rapids" # inside src/features/phone_activity_recognition SRC_LANGUAGE: "python" PHONE_BATTERY: TABLE: battery EPISODE_THRESHOLD_BETWEEN_ROWS: 30 # minutes. Max time difference for two consecutive rows to be considered within the same battery episode. PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"] SRC_FOLDER: "rapids" # inside src/features/phone_battery SRC_LANGUAGE: "python" PHONE_SCREEN: TABLE: screen PROVIDERS: RAPIDS: COMPUTE: False REFERENCE_HOUR_FIRST_USE: 0 IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable IGNORE_EPISODES_LONGER_THAN: 0 # in minutes, set to 0 to disable FEATURES: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"] # "episodepersensedminutes" needs to be added later EPISODE_TYPES: ["unlock"] SRC_FOLDER: "rapids" # inside src/features/phone_screen SRC_LANGUAGE: "python" PHONE_LIGHT: TABLE: light PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"] SRC_FOLDER: "rapids" # inside src/features/phone_light SRC_LANGUAGE: "python" PHONE_ACCELEROMETER: TABLE: accelerometer PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"] SRC_FOLDER: "rapids" # inside src/features/phone_accelerometer SRC_LANGUAGE: "python" PANDA: COMPUTE: False VALID_SENSED_MINUTES: False FEATURES: exertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"] nonexertional_activity_episode: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"] SRC_FOLDER: "panda" # inside src/features/phone_accelerometer SRC_LANGUAGE: "python" PHONE_APPLICATIONS_FOREGROUND: TABLE: applications_foreground APPLICATION_CATEGORIES: CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store) CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv" UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway PROVIDERS: RAPIDS: COMPUTE: False SINGLE_CATEGORIES: ["all", "email"] MULTIPLE_CATEGORIES: social: ["socialnetworks", "socialmediatools"] entertainment: ["entertainment", "gamingknowledge", "gamingcasual", "gamingadventure", "gamingstrategy", "gamingtoolscommunity", "gamingroleplaying", "gamingaction", "gaminglogic", "gamingsports", "gamingsimulation"] SINGLE_APPS: ["top1global", "com.facebook.moments", "com.google.android.youtube", "com.twitter.android"] # There's no entropy for single apps EXCLUDED_CATEGORIES: [] EXCLUDED_APPS: ["com.fitbit.FitbitMobile", "com.aware.plugin.upmc.cancer"] FEATURES: ["count", "timeoffirstuse", "timeoflastuse", "frequencyentropy"] SRC_FOLDER: "rapids" # inside src/features/phone_applications_foreground SRC_LANGUAGE: "python" PHONE_WIFI_VISIBLE: TABLE: "wifi" PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"] SRC_FOLDER: "rapids" # inside src/features/phone_wifi_visible SRC_LANGUAGE: "r" PHONE_WIFI_CONNECTED: TABLE: "sensor_wifi" PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"] SRC_FOLDER: "rapids" # inside src/features/phone_wifi_connected SRC_LANGUAGE: "r" PHONE_CONVERSATION: TABLE: ANDROID: plugin_studentlife_audio_android IOS: plugin_studentlife_audio PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration", "sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","sumenergy", "avgenergy","sdenergy","minenergy","maxenergy","silencesensedfraction","noisesensedfraction", "voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction", "unknownexpectedfraction","countconversation"] RECORDING_MINUTES: 1 PAUSED_MINUTES : 3 SRC_FOLDER: "rapids" # inside src/features/phone_conversation SRC_LANGUAGE: "python" ############## FITBIT ########################################################## ################################################################################ FITBIT_HEARTRATE: TABLE_FORMAT: JSON # JSON or CSV. If your JSON or CSV data are files change [SENSOR_DATA][FITBIT][SOURCE][TYPE] to FILES TABLE: JSON: fitbit_heartrate CSV: SUMMARY: heartrate_summary INTRADAY: heartrate_intraday PROVIDERS: RAPIDS: COMPUTE: False FEATURES: SUMMARY: ["restinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. height, weight) use these with care: ["caloriesoutofrange", "caloriesfatburn", "caloriescardio", "caloriespeak"] INTRADAY: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"] SRC_FOLDER: "rapids" # inside src/features/fitbit_heartrate SRC_LANGUAGE: "python" FITBIT_STEPS: TABLE_FORMAT: JSON # JSON or CSV. If your JSON or CSV data are files change [SENSOR_DATA][FITBIT][SOURCE][TYPE] to FILES TABLE: JSON: fitbit_steps CSV: SUMMARY: steps_summary INTRADAY: steps_intraday EXCLUDE_SLEEP: # you can exclude sleep periods from the step features computation EXCLUDE: False TYPE: FIXED # FIXED OR FITBIT_BASED (configure FITBIT_SLEEP section) FIXED: START: "23:00" END: "07:00" PROVIDERS: RAPIDS: COMPUTE: False FEATURES: ALL_STEPS: ["sumallsteps", "maxallsteps", "minallsteps", "avgallsteps", "stdallsteps"] SEDENTARY_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"] ACTIVE_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"] THRESHOLD_ACTIVE_BOUT: 10 # steps INCLUDE_ZERO_STEP_ROWS: False FITBIT_SLEEP: TABLE_FORMAT: JSON # JSON or CSV. If your JSON or CSV data are files change [SENSOR_DATA][FITBIT][SOURCE][TYPE] to FILES TABLE: JSON: fitbit_sleep CSV: SUMMARY: sleep_summary INTRADAY: sleep_intraday PROVIDERS: RAPIDS: COMPUTE: False SLEEP_TYPES: ["main", "nap", "all"] SUMMARY_FEATURES: ["sumdurationafterwakeup", "sumdurationasleep", "sumdurationawake", "sumdurationtofallasleep", "sumdurationinbed", "avgefficiency", "countepisode"] FITBIT_CALORIES: TABLE_FORMAT: JSON # JSON or CSV. If your JSON or CSV data are files change [SENSOR_DATA][FITBIT][SOURCE][TYPE] to FILES TABLE: JSON: fitbit_calories CSV: SUMMARY: calories_summary INTRADAY: calories_intraday PROVIDERS: RAPIDS: COMPUTE: False FEATURES: [] ### Visualizations ############################################################# ################################################################################ HEATMAP_FEATURES_CORRELATIONS: PLOT: False MIN_ROWS_RATIO: 0.5 MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour PHONE_FEATURES: [accelerometer, activity_recognition, applications_foreground, battery, calls_incoming, calls_missed, calls_outgoing, conversation, light, location_doryab, messages_received, messages_sent, screen] FITBIT_FEATURES: [fitbit_heartrate, fitbit_step, fitbit_sleep] CORR_THRESHOLD: 0.1 CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"} HISTOGRAM_VALID_SENSED_HOURS: PLOT: False MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour HEATMAP_DAYS_BY_SENSORS: PLOT: False MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour EXPECTED_NUM_OF_DAYS: -1 DB_TABLES: [accelerometer, applications_foreground, battery, bluetooth, calls, light, locations, messages, screen, wifi, sensor_wifi, plugin_google_activity_recognition, plugin_ios_activity_recognition, plugin_studentlife_audio_android, plugin_studentlife_audio] HEATMAP_SENSED_BINS: PLOT: False BIN_SIZE: *bin_size OVERALL_COMPLIANCE_HEATMAP: PLOT: False ONLY_SHOW_VALID_DAYS: False EXPECTED_NUM_OF_DAYS: -1 BIN_SIZE: *bin_size MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour