# Participants to include in the analysis # You must create a file for each participant named pXXX containing their device_id. This can be done manually or automatically PIDS: [t01] # Global var with common day segments DAY_SEGMENTS: &day_segments TYPE: INTERVAL_EVERY_DAY # FREQUENCY_EVERY_DAY, INTERVAL_EVERY_DAY, INTERVAL_FLEXIBLE_DAY FILE: "data/external/daysegments_interval.csv" # Global timezone # Use codes from https://en.wikipedia.org/wiki/List_of_tz_database_time_zones # Double check your code, for example EST is not US Eastern Time. TIMEZONE: &timezone America/New_York DATABASE_GROUP: &database_group MY_GROUP DOWNLOAD_PARTICIPANTS: IGNORED_DEVICE_IDS: [] # for example "5a1dd68c-6cd1-48fe-ae1e-14344ac5215f" GROUP: *database_group # Download data config DOWNLOAD_DATASET: GROUP: *database_group # Readable datetime config READABLE_DATETIME: FIXED_TIMEZONE: *timezone PHONE_VALID_SENSED_BINS: COMPUTE: False # This flag is automatically ignored (set to True) if you are extracting PHONE_VALID_SENSED_DAYS or screen or Barnett's location features BIN_SIZE: &bin_size 5 # (in minutes) # Add as many sensor tables as you have, they all improve the computation of PHONE_VALID_SENSED_BINS and PHONE_VALID_SENSED_DAYS. # If you are extracting screen or Barnett's location features, screen and locations tables are mandatory. DB_TABLES: [] PHONE_VALID_SENSED_DAYS: COMPUTE: False MIN_VALID_HOURS_PER_DAY: &min_valid_hours_per_day [16] # (out of 24) MIN_HOURS_PER_DAY MIN_VALID_BINS_PER_HOUR: &min_valid_bins_per_hour [6] # (out of 60min/BIN_SIZE bins) # Communication SMS features config, TYPES and FEATURES keys need to match MESSAGES: DB_TABLE: messages PROVIDERS: RAPIDS: COMPUTE: False MESSAGES_TYPES : [received, sent] FEATURES: received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact] sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact] SRC_LANGUAGE: "r" SRC_FOLDER: "rapids" # inside src/features/messages # Communication call features config, TYPES and FEATURES keys need to match CALLS: DB_TABLE: calls PROVIDERS: RAPIDS: COMPUTE: False CALL_TYPES: [missed, incoming, outgoing] FEATURES: missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact] incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact] outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact] SRC_LANGUAGE: "r" SRC_FOLDER: "rapids" # inside src/features/calls APPLICATION_GENRES: CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store) CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv" UPDATE_CATALOGUE_FILE: false # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE SCRAPE_MISSING_GENRES: false # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway LOCATIONS: DB_TABLE: locations LOCATIONS_TO_USE: FUSED_RESAMPLED # ALL, GPS OR FUSED_RESAMPLED FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD: 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION: 720 # minutes, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row TIMEZONE: *timezone PROVIDERS: DORYAB: COMPUTE: False FEATURES: ["locationvariance","loglocationvariance","totaldistance","averagespeed","varspeed","circadianmovement","numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","meanlengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy"] DBSCAN_EPS: 10 # meters DBSCAN_MINSAMPLES: 5 THRESHOLD_STATIC : 1 # km/h MAXIMUM_GAP_ALLOWED: 300 MINUTES_DATA_USED: False SAMPLING_FREQUENCY: 0 SRC_FOLDER: "doryab" # inside src/features/locations SRC_LANGUAGE: "python" BARNETT: COMPUTE: False FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"] ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius TIMEZONE: *timezone MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features SRC_FOLDER: "barnett" # inside src/features/locations SRC_LANGUAGE: "r" BLUETOOTH: DB_TABLE: bluetooth PROVIDERS: RAPIDS: COMPUTE: False DAY_SEGMENTS: *day_segments FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"] SRC_FOLDER: "rapids" # inside src/features/bluetooth SRC_LANGUAGE: "r" ACTIVITY_RECOGNITION: COMPUTE: False DB_TABLE: ANDROID: plugin_google_activity_recognition IOS: plugin_ios_activity_recognition DAY_SEGMENTS: *day_segments FEATURES: ["count","mostcommonactivity","countuniqueactivities","activitychangecount","sumstationary","summobile","sumvehicle"] BATTERY: COMPUTE: False DB_TABLE: battery DAY_SEGMENTS: *day_segments FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"] SCREEN: COMPUTE: False DB_TABLE: screen DAY_SEGMENTS: *day_segments REFERENCE_HOUR_FIRST_USE: 0 IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable IGNORE_EPISODES_LONGER_THAN: 0 # in minutes, set to 0 to disable FEATURES_DELTAS: ["countepisode", "episodepersensedminutes", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"] EPISODE_TYPES: ["unlock"] LIGHT: COMPUTE: False DB_TABLE: light DAY_SEGMENTS: *day_segments FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"] ACCELEROMETER: COMPUTE: False DB_TABLE: accelerometer DAY_SEGMENTS: *day_segments FEATURES: MAGNITUDE: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"] EXERTIONAL_ACTIVITY_EPISODE: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"] NONEXERTIONAL_ACTIVITY_EPISODE: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"] VALID_SENSED_MINUTES: False APPLICATIONS_FOREGROUND: COMPUTE: False DB_TABLE: applications_foreground DAY_SEGMENTS: *day_segments SINGLE_CATEGORIES: ["all", "email"] MULTIPLE_CATEGORIES: social: ["socialnetworks", "socialmediatools"] entertainment: ["entertainment", "gamingknowledge", "gamingcasual", "gamingadventure", "gamingstrategy", "gamingtoolscommunity", "gamingroleplaying", "gamingaction", "gaminglogic", "gamingsports", "gamingsimulation"] SINGLE_APPS: ["top1global", "com.facebook.moments", "com.google.android.youtube", "com.twitter.android"] # There's no entropy for single apps EXCLUDED_CATEGORIES: ["system_apps"] EXCLUDED_APPS: ["com.fitbit.FitbitMobile", "com.aware.plugin.upmc.cancer"] FEATURES: ["count", "timeoffirstuse", "timeoflastuse", "frequencyentropy"] HEARTRATE: COMPUTE: False DB_TABLE: fitbit_data DAY_SEGMENTS: *day_segments SUMMARY_FEATURES: ["restinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. heigh, weight) use with care: ["caloriesoutofrange", "caloriesfatburn", "caloriescardio", "caloriespeak"] INTRADAY_FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"] STEP: COMPUTE: False DB_TABLE: fitbit_data DAY_SEGMENTS: *day_segments EXCLUDE_SLEEP: EXCLUDE: False TYPE: FIXED # FIXED OR FITBIT_BASED (CONFIGURE FITBIT's SLEEP DB_TABLE) FIXED: START: "23:00" END: "07:00" FEATURES: ALL_STEPS: ["sumallsteps", "maxallsteps", "minallsteps", "avgallsteps", "stdallsteps"] SEDENTARY_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"] ACTIVE_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"] THRESHOLD_ACTIVE_BOUT: 10 # steps INCLUDE_ZERO_STEP_ROWS: False SLEEP: COMPUTE: False DB_TABLE: fitbit_data DAY_SEGMENTS: *day_segments SLEEP_TYPES: ["main", "nap", "all"] SUMMARY_FEATURES: ["sumdurationafterwakeup", "sumdurationasleep", "sumdurationawake", "sumdurationtofallasleep", "sumdurationinbed", "avgefficiency", "countepisode"] WIFI: COMPUTE: False DB_TABLE: VISIBLE_ACCESS_POINTS: "wifi" # if you only have a CONNECTED_ACCESS_POINTS table, set this value to "" CONNECTED_ACCESS_POINTS: "sensor_wifi" # if you only have a VISIBLE_ACCESS_POINTS table, set this value to "" DAY_SEGMENTS: *day_segments FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"] CONVERSATION: COMPUTE: False DB_TABLE: ANDROID: plugin_studentlife_audio_android IOS: plugin_studentlife_audio DAY_SEGMENTS: *day_segments FEATURES: ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration", "sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","sumenergy", "avgenergy","sdenergy","minenergy","maxenergy","silencesensedfraction","noisesensedfraction", "voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction", "unknownexpectedfraction","countconversation"] RECORDINGMINUTES: 1 PAUSEDMINUTES : 3 ### Visualizations ################################################################ HEATMAP_FEATURES_CORRELATIONS: PLOT: False MIN_ROWS_RATIO: 0.5 MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour PHONE_FEATURES: [accelerometer, activity_recognition, applications_foreground, battery, calls_incoming, calls_missed, calls_outgoing, conversation, light, location_doryab, messages_received, messages_sent, screen] FITBIT_FEATURES: [fitbit_heartrate, fitbit_step, fitbit_sleep] CORR_THRESHOLD: 0.1 CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"} HISTOGRAM_VALID_SENSED_HOURS: PLOT: False MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour HEATMAP_DAYS_BY_SENSORS: PLOT: False MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour EXPECTED_NUM_OF_DAYS: -1 DB_TABLES: [accelerometer, applications_foreground, battery, bluetooth, calls, light, locations, messages, screen, wifi, sensor_wifi, plugin_google_activity_recognition, plugin_ios_activity_recognition, plugin_studentlife_audio_android, plugin_studentlife_audio] HEATMAP_SENSED_BINS: PLOT: False BIN_SIZE: *bin_size OVERALL_COMPLIANCE_HEATMAP: PLOT: False ONLY_SHOW_VALID_DAYS: False EXPECTED_NUM_OF_DAYS: -1 BIN_SIZE: *bin_size MIN_VALID_HOURS_PER_DAY: *min_valid_hours_per_day MIN_VALID_BINS_PER_HOUR: *min_valid_bins_per_hour