import pandas as pd import numpy as np import math, sys from sklearn.impute import KNNImputer def straw_cleaning(sensor_data_files, provider, target=None): features = pd.read_csv(sensor_data_files["sensor_data"][0]) esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target columns #Filter all rows that do not have the target column available # get target from config or function parameter if target is None: features = features[features[esm_cols[0]].notna()] else: features = features[features['phone_esm_straw_' + target].notna()] # TODO: reorder the cleaning steps so it makes sense for the analysis # TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this # the snakemake rules will also have to come with additional parameter (in rules/features.smk) # TODO: imputate the rows where the participants have at least 2 rows (2 time segments) - error prevention (has to be tested) # TODO: because of different imputation logic (e.g., the phone_data_yield parameter for phone features) the imputation has to # be planned accordingly. Should the phone features first be imputated with 0 and only then general kNN imputation is executed # i.e., on the rows that are missing when E4 and phone features availability is not synchronized. CHECK phone_data_yield feat. # A lot of imputation types/levels (1) imputation related to feature's content (2) imputation related to phone / empatica # structual specifics (3) general imputation which is needed when types of features desynchronization is present (row is not full) # because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN # values still exist. # Impute selected features event impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"] if impute_phone_features["COMPUTE"]: if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns: raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].") # TODO: if the type of the imputation will vary for different groups of features make conditional imputations here phone_cols = [col for col in features if \ col.startswith('phone_applications_foreground_rapids_') or col.startswith('phone_battery_rapids_') or col.startswith('phone_calls_rapids_') or col.startswith('phone_keyboard_rapids_') or col.startswith('phone_messages_rapids_') or col.startswith('phone_screen_rapids_') or col.startswith('phone_wifi_')] mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE'] features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower()) # Drop rows with the value of data_yield_column less than data_yield_ratio_threshold data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower() data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit if not data_yield_column in features.columns: raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].") if provider["DATA_YIELD_RATIO_THRESHOLD"]: features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]] # Remove cols if threshold of NaN values is passed features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]] # Remove cols where variance is 0 if provider["COLS_VAR_THRESHOLD"]: features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True) # Preserve esm cols if deleted (has to come after drop cols operations) for esm in esm_cols: if esm not in features: features[esm] = esm_cols[esm] # Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs? drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"] if drop_corr_features["COMPUTE"]: numerical_cols = features.select_dtypes(include=np.number).columns.tolist() # Remove columns where NaN count threshold is passed valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]] cor_matrix = valid_features.corr(method='spearman').abs() upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool)) to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])] features.drop(to_drop, axis=1, inplace=True) # Remove rows if threshold of NaN values is passed min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row features.dropna(axis=0, thresh=min_count, inplace=True) return features def impute(df, method='zero'): def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation imputer = KNNImputer(n_neighbors=3) return pd.DataFrame(imputer.fit_transform(df), columns=df.columns) return { # rest of the columns should be imputed with the selected method 'zero': df.fillna(0), 'mean': df.fillna(df.mean()), 'median': df.fillna(df.median()), 'k-nearest': k_nearest(df) }[method]