import pandas as pd import numpy as np def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs): acc_data = pd.read_csv(sensor_data_files["sensor_data"]) requested_features = provider["FEATURES"] # name of the features this function can compute base_features_names = ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"] # the subset of requested features this function can compute features_to_compute = list(set(requested_features) & set(base_features_names)) acc_features = pd.DataFrame(columns=["local_segment"] + features_to_compute) if not acc_data.empty: acc_data = filter_data_by_segment(acc_data, time_segment) if not acc_data.empty: acc_features = pd.DataFrame() # get magnitude related features: magnitude = sqrt(x^2+y^2+z^2) magnitude = acc_data.apply(lambda row: np.sqrt(row["x"] ** 2 + row["y"] ** 2 + row["z"] ** 2), axis=1) acc_data = acc_data.assign(magnitude = magnitude.values) if "maxmagnitude" in features_to_compute: acc_features["maxmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].max() if "minmagnitude" in features_to_compute: acc_features["minmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].min() if "avgmagnitude" in features_to_compute: acc_features["avgmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].mean() if "medianmagnitude" in features_to_compute: acc_features["medianmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].median() if "stdmagnitude" in features_to_compute: acc_features["stdmagnitude"] = acc_data.groupby(["local_segment"])["magnitude"].std() acc_features = acc_features.reset_index() return acc_features