rule restore_sql_file: input: sql_file = "data/external/rapids_example.sql", db_credentials = ".env" params: group = config["DATABASE_GROUP"] output: touch("data/interim/restore_sql_file.done") script: "../src/data/restore_sql_file.py" rule create_example_participant_files: output: expand("data/external/{pid}", pid = ["example01", "example02"]) shell: "echo 'a748ee1a-1d0b-4ae9-9074-279a2b6ba524\nandroid\ntest01\n2020/04/23,2020/05/04\n' >> ./data/external/example01 && echo '13dbc8a3-dae3-4834-823a-4bc96a7d459d\nios\ntest02\n2020/04/23,2020/05/04\n' >> ./data/external/example02" rule create_participants_files: input: participants_file = [] if config["CREATE_PARTICIPANT_FILES"]["SOURCE"]["TYPE"] == "AWARE_DEVICE_TABLE" else config["CREATE_PARTICIPANT_FILES"]["SOURCE"]["CSV_FILE_PATH"] params: config = config["CREATE_PARTICIPANT_FILES"] script: "../src/data/create_participants_files.R" rule download_phone_data: input: "data/external/participant_files/{pid}.yaml" params: source = config["PHONE_DATA_CONFIGURATION"]["SOURCE"], sensor = "phone_" + "{sensor}", table = lambda wildcards: config["PHONE_" + str(wildcards.sensor).upper()]["TABLE"], timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], aware_multiplatform_tables = config["PHONE_ACTIVITY_RECOGNITION"]["TABLE"]["ANDROID"] + "," + config["PHONE_ACTIVITY_RECOGNITION"]["TABLE"]["IOS"] + "," + config["PHONE_CONVERSATION"]["TABLE"]["ANDROID"] + "," + config["PHONE_CONVERSATION"]["TABLE"]["IOS"], output: "data/raw/{pid}/phone_{sensor}_raw.csv" script: "../src/data/download_phone_data.R" rule download_fitbit_data: input: participant_file = "data/external/participant_files/{pid}.yaml", input_file = [] if config["FITBIT_DATA_CONFIGURATION"]["SOURCE"]["TYPE"] == "DATABASE" else lambda wildcards: config["FITBIT_" + str(wildcards.sensor).upper()]["TABLE"] params: data_configuration = config["FITBIT_DATA_CONFIGURATION"], sensor = "fitbit_" + "{sensor}", table = lambda wildcards: config["FITBIT_" + str(wildcards.sensor).upper()]["TABLE"], output: "data/raw/{pid}/fitbit_{sensor}_raw.csv" script: "../src/data/download_fitbit_data.R" rule compute_day_segments: input: config["DAY_SEGMENTS"]["FILE"], "data/external/participant_files/{pid}.yaml" params: day_segments_type = config["DAY_SEGMENTS"]["TYPE"], pid = "{pid}" output: segments_file = "data/interim/day_segments/{pid}_day_segments.csv", segments_labels_file = "data/interim/day_segments/{pid}_day_segments_labels.csv", script: "../src/data/compute_day_segments.py" rule phone_readable_datetime: input: sensor_input = "data/raw/{pid}/phone_{sensor}_raw.csv", day_segments = "data/interim/day_segments/{pid}_day_segments.csv" params: timezones = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["TYPE"], fixed_timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], day_segments_type = config["DAY_SEGMENTS"]["TYPE"], include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"] output: "data/raw/{pid}/phone_{sensor}_with_datetime.csv" script: "../src/data/readable_datetime.R" rule phone_yielded_timestamps: input: all_sensors = expand("data/raw/{{pid}}/{sensor}_raw.csv", sensor = map(str.lower, config["PHONE_DATA_YIELD"]["SENSORS"])) params: sensors = config["PHONE_DATA_YIELD"]["SENSORS"] # not used but needed so the rule is triggered if this array changes output: "data/interim/{pid}/phone_yielded_timestamps.csv" script: "../src/data/phone_yielded_timestamps.R" rule phone_yielded_timestamps_with_datetime: input: sensor_input = "data/interim/{pid}/phone_yielded_timestamps.csv", day_segments = "data/interim/day_segments/{pid}_day_segments.csv" params: timezones = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["TYPE"], fixed_timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], day_segments_type = config["DAY_SEGMENTS"]["TYPE"], include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"] output: "data/interim/{pid}/phone_yielded_timestamps_with_datetime.csv" script: "../src/data/readable_datetime.R" rule unify_ios_android: input: sensor_data = "data/raw/{pid}/{sensor}_with_datetime.csv", participant_info = "data/external/participant_files/{pid}.yaml" params: sensor = "{sensor}", output: "data/raw/{pid}/{sensor}_with_datetime_unified.csv" script: "../src/data/unify_ios_android.R" rule process_phone_locations_types: input: locations = "data/raw/{pid}/phone_locations_raw.csv", phone_sensed_timestamps = "data/interim/{pid}/phone_yielded_timestamps.csv", params: consecutive_threshold = config["PHONE_LOCATIONS"]["FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD"], time_since_valid_location = config["PHONE_LOCATIONS"]["FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION"], locations_to_use = config["PHONE_LOCATIONS"]["LOCATIONS_TO_USE"] output: "data/interim/{pid}/phone_locations_processed.csv" script: "../src/data/process_location_types.R" rule phone_locations_processed_with_datetime: input: sensor_input = "data/interim/{pid}/phone_locations_processed.csv", day_segments = "data/interim/day_segments/{pid}_day_segments.csv" params: timezones = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["TYPE"], fixed_timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], day_segments_type = config["DAY_SEGMENTS"]["TYPE"], include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"] output: "data/interim/{pid}/phone_locations_processed_with_datetime.csv" script: "../src/data/readable_datetime.R" rule resample_episodes: input: "data/interim/{pid}/{sensor}_episodes.csv" output: "data/interim/{pid}/{sensor}_episodes_resampled.csv" script: "../src/features/utils/resample_episodes.R" rule resample_episodes_with_datetime: input: sensor_input = "data/interim/{pid}/{sensor}_episodes_resampled.csv", day_segments = "data/interim/day_segments/{pid}_day_segments.csv" params: timezones = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["TYPE"], fixed_timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], day_segments_type = config["DAY_SEGMENTS"]["TYPE"], include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"] output: "data/interim/{pid}/{sensor}_episodes_resampled_with_datetime.csv" script: "../src/data/readable_datetime.R" rule phone_application_categories: input: "data/raw/{pid}/phone_applications_foreground_with_datetime.csv" params: catalogue_source = config["PHONE_APPLICATIONS_FOREGROUND"]["APPLICATION_CATEGORIES"]["CATALOGUE_SOURCE"], catalogue_file = config["PHONE_APPLICATIONS_FOREGROUND"]["APPLICATION_CATEGORIES"]["CATALOGUE_FILE"], update_catalogue_file = config["PHONE_APPLICATIONS_FOREGROUND"]["APPLICATION_CATEGORIES"]["UPDATE_CATALOGUE_FILE"], scrape_missing_genres = config["PHONE_APPLICATIONS_FOREGROUND"]["APPLICATION_CATEGORIES"]["SCRAPE_MISSING_CATEGORIES"] output: "data/raw/{pid}/phone_applications_foreground_with_datetime_with_categories.csv" script: "../src/data/application_categories.R" rule fitbit_parse_heartrate: input: participant_file = "data/external/participant_files/{pid}.yaml", raw_data = "data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_raw.csv" params: timezone = config["FITBIT_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], table = lambda wildcards: config["FITBIT_HEARTRATE_"+str(wildcards.fitbit_data_type).upper()]["TABLE"], column_format = config["FITBIT_DATA_CONFIGURATION"]["SOURCE"]["COLUMN_FORMAT"], fitbit_data_type = "{fitbit_data_type}" output: "data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_parsed.csv" script: "../src/data/fitbit_parse_heartrate.py" rule fitbit_parse_steps: input: participant_file = "data/external/participant_files/{pid}.yaml", raw_data = "data/raw/{pid}/fitbit_steps_{fitbit_data_type}_raw.csv" params: timezone = config["FITBIT_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], table = lambda wildcards: config["FITBIT_STEPS_"+str(wildcards.fitbit_data_type).upper()]["TABLE"], column_format = config["FITBIT_DATA_CONFIGURATION"]["SOURCE"]["COLUMN_FORMAT"], fitbit_data_type = "{fitbit_data_type}" output: "data/raw/{pid}/fitbit_steps_{fitbit_data_type}_parsed.csv" script: "../src/data/fitbit_parse_steps.py" rule fitbit_parse_sleep: input: participant_file = "data/external/participant_files/{pid}.yaml", raw_data = "data/raw/{pid}/fitbit_sleep_{fitbit_data_type}_raw.csv" params: timezone = config["FITBIT_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], table = lambda wildcards: config["FITBIT_SLEEP_"+str(wildcards.fitbit_data_type).upper()]["TABLE"], column_format = config["FITBIT_DATA_CONFIGURATION"]["SOURCE"]["COLUMN_FORMAT"], fitbit_data_type = "{fitbit_data_type}", sleep_episode_timestamp = config["FITBIT_SLEEP_SUMMARY"]["SLEEP_EPISODE_TIMESTAMP"] output: "data/raw/{pid}/fitbit_sleep_{fitbit_data_type}_parsed.csv" script: "../src/data/fitbit_parse_sleep.py" # rule fitbit_parse_calories: # input: # data = expand("data/raw/{{pid}}/fitbit_calories_{fitbit_data_type}_raw.csv", fitbit_data_type = (["json"] if config["FITBIT_CALORIES"]["TABLE_FORMAT"] == "JSON" else ["summary", "intraday"])) # params: # timezone = config["FITBIT_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], # table = config["FITBIT_CALORIES"]["TABLE"], # table_format = config["FITBIT_CALORIES"]["TABLE_FORMAT"] # output: # summary_data = "data/raw/{pid}/fitbit_calories_summary_parsed.csv", # intraday_data = "data/raw/{pid}/fitbit_calories_intraday_parsed.csv" # script: # "../src/data/fitbit_parse_calories.py" rule fitbit_readable_datetime: input: sensor_input = "data/raw/{pid}/fitbit_{sensor}_{fitbit_data_type}_parsed.csv", day_segments = "data/interim/day_segments/{pid}_day_segments.csv" params: fixed_timezone = config["FITBIT_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"], day_segments_type = config["DAY_SEGMENTS"]["TYPE"], include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"] output: "data/raw/{pid}/fitbit_{sensor}_{fitbit_data_type}_parsed_with_datetime.csv" script: "../src/data/readable_datetime.R"