Compare commits

..

1 Commits

166 changed files with 1835 additions and 12234 deletions

7
.gitattributes vendored
View File

@ -1,7 +0,0 @@
# We'll let Git's auto-detection algorithm infer if a file is text. If it is,
# enforce LF line endings regardless of OS or git configurations.
* text=auto eol=lf
# Isolate binary files in case the auto-detection algorithm fails and
# marks them as text files (which could brick them).
*.{png,jpg,jpeg,gif,webp,woff,woff2} binary

16
.gitignore vendored
View File

@ -93,17 +93,10 @@ packrat/*
# exclude data from source control by default
data/external/*
!/data/external/empatica/empatica1/E4 Data.zip
!/data/external/.gitkeep
!/data/external/stachl_application_genre_catalogue.csv
!/data/external/timesegments*.csv
!/data/external/wiki_tz.csv
!/data/external/main_study_usernames.csv
!/data/external/timezone.csv
!/data/external/play_store_application_genre_catalogue.csv
!/data/external/play_store_categories_count.csv
data/raw/*
!/data/raw/.gitkeep
data/interim/*
@ -121,12 +114,3 @@ settings.dcf
tests/fakedata_generation/
site/
credentials.yaml
# Docker container and other files
.devcontainer
# Calculating features module
calculatingfeatures/
# Temp folder for rapids data/external
rapids_temp_data/

188
README.md
View File

@ -11,191 +11,3 @@
For more information refer to our [documentation](http://www.rapids.science)
By [MoSHI](https://www.moshi.pitt.edu/), [University of Pittsburgh](https://www.pitt.edu/)
## Installation
For RAPIDS installation refer to to the [documentation](https://www.rapids.science/1.8/setup/installation/)
### For the installation of the Docker version
1. Follow the [instructions](https://www.rapids.science/1.8/setup/installation/) to setup RAPIDS via Docker (from scratch).
2. Delete current contents in /rapids/ folder when in a container session.
```
cd ..
rm -rf rapids/{*,.*}
cd rapids
```
3. Clone RAPIDS workspace from Git and checkout a specific branch.
```
git clone "https://repo.ijs.si/junoslukan/rapids.git" .
git checkout <branch_name>
```
4. Install missing “libpq-dev” dependency with bash.
```
apt-get update -y
apt-get install -y libpq-dev
```
5. Restore R venv.
Type R to go to the interactive R session and then:
```
renv::restore()
```
6. Install cr-features module
From: https://repo.ijs.si/matjazbostic/calculatingfeatures.git -> branch master.
Then follow the "cr-features module" section below.
7. Install all required packages from environment.yml, prune also deletes conda packages not present in environment file.
```
conda env update --file environment.yml prune
```
8. If you wish to update your R or Python venvs.
```
R in interactive session:
renv::snapshot()
Python:
conda env export --no-builds | sed 's/^.*libgfortran.*$/ - libgfortran/' | sed 's/^.*mkl=.*$/ - mkl/' > environment.yml
```
### cr-features module
This RAPIDS extension uses cr-features library accessible [here](https://repo.ijs.si/matjazbostic/calculatingfeatures).
To use cr-features library:
- Follow the installation instructions in the [README.md](https://repo.ijs.si/matjazbostic/calculatingfeatures/-/blob/master/README.md).
- Copy built calculatingfeatures folder into the RAPIDS workspace.
- Install the cr-features package by:
```
pip install path/to/the/calculatingfeatures/folder
e.g. pip install ./calculatingfeatures if the folder is copied to main parent directory
cr-features package has to be built and installed everytime to get the newest version.
Or an the newest version of the docker image must be used.
```
## Updating RAPIDS
To update RAPIDS, first pull and merge [origin]( https://github.com/carissalow/rapids), such as with:
```commandline
git fetch --progress "origin" refs/heads/master
git merge --no-ff origin/master
```
Next, update the conda and R virtual environment.
```bash
R -e 'renv::restore(repos = c(CRAN = "https://packagemanager.rstudio.com/all/__linux__/focal/latest"))'
```
## Custom configuration
### Credentials
As mentioned under [Database in RAPIDS documentation](https://www.rapids.science/1.6/snippets/database/), a `credentials.yaml` file is needed to connect to a database.
It should contain:
```yaml
PSQL_STRAW:
database: staw
host: 212.235.208.113
password: password
port: 5432
user: staw_db
```
where`password` needs to be specified as well.
## Possible installation issues
### Missing dependencies for RPostgres
To install `RPostgres` R package (used to connect to the PostgreSQL database), an error might occur:
```text
------------------------- ANTICONF ERROR ---------------------------
Configuration failed because libpq was not found. Try installing:
* deb: libpq-dev (Debian, Ubuntu, etc)
* rpm: postgresql-devel (Fedora, EPEL)
* rpm: postgreql8-devel, psstgresql92-devel, postgresql93-devel, or postgresql94-devel (Amazon Linux)
* csw: postgresql_dev (Solaris)
* brew: libpq (OSX)
If libpq is already installed, check that either:
(i) 'pkg-config' is in your PATH AND PKG_CONFIG_PATH contains a libpq.pc file; or
(ii) 'pg_config' is in your PATH.
If neither can detect , you can set INCLUDE_DIR
and LIB_DIR manually via:
R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'
--------------------------[ ERROR MESSAGE ]----------------------------
<stdin>:1:10: fatal error: libpq-fe.h: No such file or directory
compilation terminated.
```
The library requires `libpq` for compiling from source, so install accordingly.
### Timezone environment variable for tidyverse (relevant for WSL2)
One of the R packages, `tidyverse` might need access to the `TZ` environment variable during the installation.
On Ubuntu 20.04 on WSL2 this triggers the following error:
```text
> install.packages('tidyverse')
ERROR: configuration failed for package xml2
System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to create bus connection: Host is down
Warning in system("timedatectl", intern = TRUE) :
running command 'timedatectl' had status 1
Error in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) :
namespace xml2 1.3.1 is already loaded, but >= 1.3.2 is required
Calls: <Anonymous> ... namespaceImportFrom -> asNamespace -> loadNamespace
Execution halted
ERROR: lazy loading failed for package tidyverse
```
This happens because WSL2 does not use the `timedatectl` service, which provides this variable.
```bash
~$ timedatectl
System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to create bus connection: Host is down
```
and later
```bash
Warning message:
In system("timedatectl", intern = TRUE) :
running command 'timedatectl' had status 1
Execution halted
```
This can be amended by setting the environment variable manually before attempting to install `tidyverse`:
```bash
export TZ='Europe/Ljubljana'
```
Note: if this is needed to avoid runtime issues, you need to either define this environment variable in each new terminal window or (better) define it in your `~/.bashrc` or `~/.bash_profile`.
## Possible runtime issues
### Unix end of line characters
Upon running rapids, an error might occur:
```bash
/usr/bin/env: python3\r: No such file or directory
```
This is due to Windows style end of line characters.
To amend this, I added a `.gitattributes` files to force `git` to checkout `rapids` using Unix EOL characters.
If this still fails, `dos2unix` can be used to change them.
### System has not been booted with systemd as init system (PID 1)
See [the installation issue above](#Timezone-environment-variable-for-tidyverse-(relevant-for-WSL2)).

View File

@ -5,7 +5,6 @@ include: "rules/common.smk"
include: "rules/renv.smk"
include: "rules/preprocessing.smk"
include: "rules/features.smk"
include: "rules/models.smk"
include: "rules/reports.smk"
import itertools
@ -164,25 +163,6 @@ for provider in config["PHONE_CONVERSATION"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
if config["PHONE_ESM"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_raw.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_with_datetime.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_clean.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_features/phone_esm_{language}_{provider_key}.csv",pid=config["PIDS"],language=get_script_language(config["PHONE_ESM"]["PROVIDERS"][provider]["SRC_SCRIPT"]),provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_esm.csv", pid=config["PIDS"]))
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["PHONE_SPEECH"]["PROVIDERS"].keys():
if config["PHONE_SPEECH"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/phone_speech_raw.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/phone_speech_with_datetime.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_speech_features/phone_speech_{language}_{provider_key}.csv",pid=config["PIDS"],language=get_script_language(config["PHONE_SPEECH"]["PROVIDERS"][provider]["SRC_SCRIPT"]),provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_speech.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
for provider in config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"].keys():
@ -337,7 +317,7 @@ for provider in config["EMPATICA_ACCELEROMETER"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_accelerometer.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
if config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_raw.csv", pid=config["PIDS"]))
@ -383,7 +363,7 @@ for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_inter_beat_interval.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if isinstance(config["EMPATICA_TAGS"]["PROVIDERS"], dict):
for provider in config["EMPATICA_TAGS"]["PROVIDERS"].keys():
if config["EMPATICA_TAGS"]["PROVIDERS"][provider]["COMPUTE"]:
@ -414,34 +394,6 @@ if config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["PLOT"]:
if config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["PLOT"]:
files_to_compute.append("reports/data_exploration/heatmap_feature_correlation_matrix.html")
# Data Cleaning
for provider in config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][provider]["COMPUTE"]:
if provider == "STRAW":
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
else:
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
for provider in config["ALL_CLEANING_OVERALL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_OVERALL"]["PROVIDERS"][provider]["COMPUTE"]:
if provider == "STRAW":
for target in config["PARAMS_FOR_ANALYSIS"]["TARGET"]["ALL_LABELS"]:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_py_(" + target + ").csv"))
else:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
# Baseline features
if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/baseline_merged.csv"))
files_to_compute.extend(expand("data/raw/{pid}/participant_baseline_raw.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/baseline_questionnaires.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]))
# Targets (labels)
if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
for target in config["PARAMS_FOR_ANALYSIS"]["TARGET"]["ALL_LABELS"]:
files_to_compute.extend(expand("data/processed/models/population_model/input_" + target + ".csv"))
rule all:
input:

View File

View File

@ -1,57 +0,0 @@
from pprint import pprint
import sklearn.metrics
import autosklearn.regression
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yaml
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
model_input = pd.read_csv("data/processed/models/population_model/input_PANAS_negative_affect_mean.csv") # Standardizirani podatki
model_input.dropna(axis=1, how="all", inplace=True)
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
categorical_feature_colnames = ["gender", "startlanguage"]
categorical_feature_colnames += [col for col in model_input.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_features = model_input[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
categorical_features = categorical_features.fillna(mode_categorical_features)
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = model_input.drop(categorical_feature_colnames, axis=1)
model_in = pd.concat([numerical_features, categorical_features], axis=1)
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
model_in.set_index(index_columns, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(model_in.drop(["target", "pid"], axis=1), model_in["target"], test_size=0.30)
automl = autosklearn.regression.AutoSklearnRegressor(
time_left_for_this_task=7200,
per_run_time_limit=120
)
automl.fit(X_train, y_train, dataset_name='straw')
print(automl.leaderboard())
pprint(automl.show_models(), indent=4)
train_predictions = automl.predict(X_train)
print("Train R2 score:", sklearn.metrics.r2_score(y_train, train_predictions))
test_predictions = automl.predict(X_test)
print("Test R2 score:", sklearn.metrics.r2_score(y_test, test_predictions))
import sys
sys.exit()

View File

@ -3,17 +3,16 @@
########################################################################################################################
# See https://www.rapids.science/latest/setup/configuration/#participant-files
PIDS: ['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
PIDS: [test01]
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
CREATE_PARTICIPANT_FILES:
USERNAMES_CSV: "data/external/main_study_usernames.csv"
CSV_FILE_PATH: "data/external/main_study_participants.csv" # see docs for required format
CSV_FILE_PATH: "data/external/example_participants.csv" # see docs for required format
PHONE_SECTION:
ADD: True
IGNORED_DEVICE_IDS: []
FITBIT_SECTION:
ADD: False
ADD: True
IGNORED_DEVICE_IDS: []
EMPATICA_SECTION:
ADD: True
@ -21,25 +20,19 @@ CREATE_PARTICIPANT_FILES:
# See https://www.rapids.science/latest/setup/configuration/#time-segments
TIME_SEGMENTS: &time_segments
TYPE: EVENT # FREQUENCY, PERIODIC, EVENT
FILE: "data/external/straw_events.csv"
INCLUDE_PAST_PERIODIC_SEGMENTS: TRUE # Only relevant if TYPE=PERIODIC, see docs
TAILORED_EVENTS: # Only relevant if TYPE=EVENT
COMPUTE: True
SEGMENTING_METHOD: "30_before" # 30_before, 90_before, stress_event
INTERVAL_OF_INTEREST: 10 # duration of event of interest [minutes]
IOI_ERROR_TOLERANCE: 5 # interval of interest erorr tolerance (before and after IOI) [minutes]
TYPE: PERIODIC # FREQUENCY, PERIODIC, EVENT
FILE: "data/external/timesegments_periodic.csv"
INCLUDE_PAST_PERIODIC_SEGMENTS: FALSE # Only relevant if TYPE=PERIODIC, see docs
# See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study
TIMEZONE:
TYPE: MULTIPLE
TYPE: SINGLE
SINGLE:
TZCODE: Europe/Ljubljana
TZCODE: America/New_York
MULTIPLE:
TZ_FILE: data/external/timezone.csv
TZCODES_FILE: data/external/multiple_timezones.csv
IF_MISSING_TZCODE: USE_DEFAULT
DEFAULT_TZCODE: Europe/Ljubljana
TZCODES_FILE: data/external/multiple_timezones_example.csv
IF_MISSING_TZCODE: STOP
DEFAULT_TZCODE: America/New_York
FITBIT:
ALLOW_MULTIPLE_TZ_PER_DEVICE: False
INFER_FROM_SMARTPHONE_TZ: False
@ -50,15 +43,12 @@ TIMEZONE:
# See https://www.rapids.science/latest/setup/configuration/#data-stream-configuration
PHONE_DATA_STREAMS:
USE: aware_postgresql
USE: aware_mysql
# AVAILABLE:
aware_mysql:
DATABASE_GROUP: MY_GROUP
aware_postgresql:
DATABASE_GROUP: PSQL_STRAW
aware_csv:
FOLDER: data/external/aware_csv
@ -75,6 +65,7 @@ PHONE_ACCELEROMETER:
COMPUTE: False
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py
PANDA:
COMPUTE: False
VALID_SENSED_MINUTES: False
@ -86,12 +77,12 @@ PHONE_ACCELEROMETER:
# See https://www.rapids.science/latest/features/phone-activity-recognition/
PHONE_ACTIVITY_RECOGNITION:
CONTAINER:
ANDROID: google_ar
ANDROID: plugin_google_activity_recognition
IOS: plugin_ios_activity_recognition
EPISODE_THRESHOLD_BETWEEN_ROWS: 5 # minutes. Max time difference for two consecutive rows to be considered within the same AR episode.
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: ["count", "mostcommonactivity", "countuniqueactivities", "durationstationary", "durationmobile", "durationvehicle"]
ACTIVITY_CLASSES:
STATIONARY: ["still", "tilting"]
@ -104,42 +95,33 @@ PHONE_APPLICATIONS_CRASHES:
CONTAINER: applications_crashes
APPLICATION_CATEGORIES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/play_store_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_CATEGORIES: False # whether to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
# See https://www.rapids.science/latest/features/phone-applications-foreground/
PHONE_APPLICATIONS_FOREGROUND:
CONTAINER: applications
CONTAINER: applications_foreground
APPLICATION_CATEGORIES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/play_store_application_genre_catalogue.csv"
# Refer to data/external/play_store_categories_count.csv for a list of categories (genres) and their frequency.
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_CATEGORIES: False # whether to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
PROVIDERS:
RAPIDS:
COMPUTE: True
INCLUDE_EPISODE_FEATURES: True
SINGLE_CATEGORIES: ["Productivity", "Tools", "Communication", "Education", "Social"]
COMPUTE: False
INCLUDE_EPISODE_FEATURES: False
SINGLE_CATEGORIES: ["all", "email"]
MULTIPLE_CATEGORIES:
games: ["Puzzle", "Card", "Casual", "Board", "Strategy", "Trivia", "Word", "Adventure", "Role Playing", "Simulation", "Board, Brain Games", "Racing"]
social: ["Communication", "Social", "Dating"]
productivity: ["Tools", "Productivity", "Finance", "Education", "News & Magazines", "Business", "Books & Reference"]
health: ["Health & Fitness", "Lifestyle", "Food & Drink", "Sports", "Medical", "Parenting"]
entertainment: ["Shopping", "Music & Audio", "Entertainment", "Travel & Local", "Photography", "Video Players & Editors", "Personalization", "House & Home", "Art & Design", "Auto & Vehicles", "Entertainment,Music & Video",
"Puzzle", "Card", "Casual", "Board", "Strategy", "Trivia", "Word", "Adventure", "Role Playing", "Simulation", "Board, Brain Games", "Racing" # Add all games.
]
maps_weather: ["Maps & Navigation", "Weather"]
social: ["socialnetworks", "socialmediatools"]
entertainment: ["entertainment", "gamingknowledge", "gamingcasual", "gamingadventure", "gamingstrategy", "gamingtoolscommunity", "gamingroleplaying", "gamingaction", "gaminglogic", "gamingsports", "gamingsimulation"]
CUSTOM_CATEGORIES:
SINGLE_APPS: []
EXCLUDED_CATEGORIES: ["System", "STRAW"]
# Note: A special option here is "is_system_app".
# This excludes applications that have is_system_app = TRUE, which is a separate column in the table.
# However, all of these applications have been assigned System category.
# I will therefore filter by that category, which is a superset and is more complete. JL
EXCLUDED_APPS: []
social_media: ["com.google.android.youtube", "com.snapchat.android", "com.instagram.android", "com.zhiliaoapp.musically", "com.facebook.katana"]
dating: ["com.tinder", "com.relance.happycouple", "com.kiwi.joyride"]
SINGLE_APPS: ["top1global", "com.facebook.moments", "com.google.android.youtube", "com.twitter.android"] # There's no entropy for single apps
EXCLUDED_CATEGORIES: []
EXCLUDED_APPS: ["com.fitbit.FitbitMobile", "com.aware.plugin.upmc.cancer"]
FEATURES:
APP_EVENTS: ["countevent", "timeoffirstuse", "timeoflastuse", "frequencyentropy"]
APP_EPISODES: ["countepisode", "minduration", "maxduration", "meanduration", "sumduration"]
@ -149,7 +131,7 @@ PHONE_APPLICATIONS_FOREGROUND:
# See https://www.rapids.science/latest/features/phone-applications-notifications/
PHONE_APPLICATIONS_NOTIFICATIONS:
CONTAINER: notifications
CONTAINER: applications_notifications
APPLICATION_CATEGORIES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
@ -163,7 +145,7 @@ PHONE_BATTERY:
EPISODE_THRESHOLD_BETWEEN_ROWS: 30 # minutes. Max time difference for two consecutive rows to be considered within the same battery episode.
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
SRC_SCRIPT: src/features/phone_battery/rapids/main.py
@ -177,7 +159,7 @@ PHONE_BLUETOOTH:
SRC_SCRIPT: src/features/phone_bluetooth/rapids/main.R
DORYAB:
COMPUTE: True
COMPUTE: False
FEATURES:
ALL:
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
@ -195,10 +177,10 @@ PHONE_BLUETOOTH:
# See https://www.rapids.science/latest/features/phone-calls/
PHONE_CALLS:
CONTAINER: call
CONTAINER: calls
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES_TYPE: EPISODES # EVENTS or EPISODES
CALL_TYPES: [missed, incoming, outgoing]
FEATURES:
@ -208,7 +190,7 @@ PHONE_CALLS:
SRC_SCRIPT: src/features/phone_calls/rapids/main.R
# See https://www.rapids.science/latest/features/phone-conversation/
PHONE_CONVERSATION: # TODO Adapt for speech
PHONE_CONVERSATION:
CONTAINER:
ANDROID: plugin_studentlife_audio_android
IOS: plugin_studentlife_audio
@ -227,35 +209,14 @@ PHONE_CONVERSATION: # TODO Adapt for speech
# See https://www.rapids.science/latest/features/phone-data-yield/
PHONE_DATA_YIELD:
SENSORS: [#PHONE_ACCELEROMETER,
PHONE_ACTIVITY_RECOGNITION,
PHONE_APPLICATIONS_FOREGROUND,
PHONE_APPLICATIONS_NOTIFICATIONS,
PHONE_BATTERY,
PHONE_BLUETOOTH,
PHONE_CALLS,
PHONE_LIGHT,
PHONE_LOCATIONS,
PHONE_MESSAGES,
PHONE_SCREEN,
PHONE_WIFI_VISIBLE]
SENSORS: []
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: [ratiovalidyieldedminutes, ratiovalidyieldedhours]
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS: 0.5 # 0 to 1, minimum percentage of valid minutes in an hour to be considered valid.
SRC_SCRIPT: src/features/phone_data_yield/rapids/main.R
PHONE_ESM:
CONTAINER: esm
PROVIDERS:
STRAW:
COMPUTE: True
SCALES: ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support",
"appraisal_stressfulness_period", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]
FEATURES: [mean]
SRC_SCRIPT: src/features/phone_esm/straw/main.py
# See https://www.rapids.science/latest/features/phone-keyboard/
PHONE_KEYBOARD:
CONTAINER: keyboard
@ -267,10 +228,10 @@ PHONE_KEYBOARD:
# See https://www.rapids.science/latest/features/phone-light/
PHONE_LIGHT:
CONTAINER: light_sensor
CONTAINER: light
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
SRC_SCRIPT: src/features/phone_light/rapids/main.py
@ -284,7 +245,7 @@ PHONE_LOCATIONS:
PROVIDERS:
DORYAB:
COMPUTE: True
COMPUTE: False
FEATURES: ["locationvariance","loglocationvariance","totaldistance","avgspeed","varspeed", "numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","avglengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy","timeathome", "homelabel"]
DBSCAN_EPS: 100 # meters
DBSCAN_MINSAMPLES: 5
@ -299,7 +260,7 @@ PHONE_LOCATIONS:
SRC_SCRIPT: src/features/phone_locations/doryab/main.py
BARNETT:
COMPUTE: True
COMPUTE: False
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
IF_MULTIPLE_TIMEZONES: USE_MOST_COMMON
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
@ -314,10 +275,10 @@ PHONE_LOG:
# See https://www.rapids.science/latest/features/phone-messages/
PHONE_MESSAGES:
CONTAINER: sms
CONTAINER: messages
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
MESSAGES_TYPES : [received, sent]
FEATURES:
received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
@ -329,7 +290,7 @@ PHONE_SCREEN:
CONTAINER: screen
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
REFERENCE_HOUR_FIRST_USE: 0
IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable
IGNORE_EPISODES_LONGER_THAN: 360 # in minutes, set to 0 to disable
@ -337,15 +298,6 @@ PHONE_SCREEN:
EPISODE_TYPES: ["unlock"]
SRC_SCRIPT: src/features/phone_screen/rapids/main.py
# Custom added sensor
PHONE_SPEECH:
CONTAINER: speech
PROVIDERS:
STRAW:
COMPUTE: True
FEATURES: ["meanspeech", "stdspeech", "nlargest", "nsmallest", "medianspeech"]
SRC_SCRIPT: src/features/phone_speech/straw/main.py
# See https://www.rapids.science/latest/features/phone-wifi-connected/
PHONE_WIFI_CONNECTED:
CONTAINER: sensor_wifi
@ -360,7 +312,7 @@ PHONE_WIFI_VISIBLE:
CONTAINER: wifi
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
SRC_SCRIPT: src/features/phone_wifi_visible/rapids/main.R
@ -463,6 +415,7 @@ FITBIT_SLEEP_INTRADAY:
UNIFIED: [awake, asleep]
SLEEP_TYPES: [main, nap, all]
SRC_SCRIPT: src/features/fitbit_sleep_intraday/rapids/main.py
PRICE:
COMPUTE: False
FEATURES: [avgduration, avgratioduration, avgstarttimeofepisodemain, avgendtimeofepisodemain, avgmidpointofepisodemain, stdstarttimeofepisodemain, stdendtimeofepisodemain, stdmidpointofepisodemain, socialjetlag, rmssdmeanstarttimeofepisodemain, rmssdmeanendtimeofepisodemain, rmssdmeanmidpointofepisodemain, rmssdmedianstarttimeofepisodemain, rmssdmedianendtimeofepisodemain, rmssdmedianmidpointofepisodemain]
@ -506,7 +459,6 @@ FITBIT_STEPS_INTRADAY:
INCLUDE_ZERO_STEP_ROWS: False
SRC_SCRIPT: src/features/fitbit_steps_intraday/rapids/main.py
########################################################################################################################
# EMPATICA #
########################################################################################################################
@ -528,15 +480,6 @@ EMPATICA_ACCELEROMETER:
COMPUTE: False
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
SRC_SCRIPT: src/features/empatica_accelerometer/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ["totalMagnitudeBand", "absoluteMeanBand", "varianceBand"] # Acc features
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 15 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
SRC_SCRIPT: src/features/empatica_accelerometer/cr/main.py
# See https://www.rapids.science/latest/features/empatica-heartrate/
EMPATICA_HEARTRATE:
@ -555,15 +498,6 @@ EMPATICA_TEMPERATURE:
COMPUTE: False
FEATURES: ["maxtemp", "mintemp", "avgtemp", "mediantemp", "modetemp", "stdtemp", "diffmaxmodetemp", "diffminmodetemp", "entropytemp"]
SRC_SCRIPT: src/features/empatica_temperature/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ["maximum", "minimum", "meanAbsChange", "longestStrikeAboveMean", "longestStrikeBelowMean",
"stdDev", "median", "meanChange", "sumSquared", "squareSumOfComponent", "sumOfSquareComponents"]
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
SRC_SCRIPT: src/features/empatica_temperature/cr/main.py
# See https://www.rapids.science/latest/features/empatica-electrodermal-activity/
EMPATICA_ELECTRODERMAL_ACTIVITY:
@ -573,19 +507,6 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
COMPUTE: False
FEATURES: ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda", "diffminmodeeda", "entropyeda"]
SRC_SCRIPT: src/features/empatica_electrodermal_activity/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ['mean', 'std', 'q25', 'q75', 'qd', 'deriv', 'power', 'numPeaks', 'ratePeaks', 'powerPeaks', 'sumPosDeriv', 'propPosDeriv', 'derivTonic',
'sigTonicDifference', 'freqFeats','maxPeakAmplitudeChangeBefore', 'maxPeakAmplitudeChangeAfter', 'avgPeakAmplitudeChangeBefore',
'avgPeakAmplitudeChangeAfter', 'avgPeakChangeRatio', 'maxPeakIncreaseTime', 'maxPeakDecreaseTime', 'maxPeakDuration', 'maxPeakChangeRatio',
'avgPeakIncreaseTime', 'avgPeakDecreaseTime', 'avgPeakDuration', 'signalOverallChange', 'changeDuration', 'changeRate', 'significantIncrease',
'significantDecrease']
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 60 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', count_windows, eda_num_peaks_non_zero]
IMPUTE_NANS: True
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cr/main.py
# See https://www.rapids.science/latest/features/empatica-blood-volume-pulse/
EMPATICA_BLOOD_VOLUME_PULSE:
@ -595,15 +516,6 @@ EMPATICA_BLOOD_VOLUME_PULSE:
COMPUTE: False
FEATURES: ["maxbvp", "minbvp", "avgbvp", "medianbvp", "modebvp", "stdbvp", "diffmaxmodebvp", "diffminmodebvp", "entropybvp"]
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/dbdp/main.py
CR:
COMPUTE: False
FEATURES: ['meanHr', 'ibi', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'sd', 'sd2', 'sd1/sd2', 'numRR', # Time features
'VLF', 'LF', 'LFnorm', 'HF', 'HFnorm', 'LF/HF', 'fullIntegral'] # Freq features
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cr/main.py
# See https://www.rapids.science/latest/features/empatica-inter-beat-interval/
EMPATICA_INTER_BEAT_INTERVAL:
@ -613,16 +525,6 @@ EMPATICA_INTER_BEAT_INTERVAL:
COMPUTE: False
FEATURES: ["maxibi", "minibi", "avgibi", "medianibi", "modeibi", "stdibi", "diffmaxmodeibi", "diffminmodeibi", "entropyibi"]
SRC_SCRIPT: src/features/empatica_inter_beat_interval/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ['meanHr', 'ibi', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'sd', 'sd2', 'sd1/sd2', 'numRR', # Time features
'VLF', 'LF', 'LFnorm', 'HF', 'HFnorm', 'LF/HF', 'fullIntegral'] # Freq features
PATCH_WITH_BVP: True
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
SRC_SCRIPT: src/features/empatica_inter_beat_interval/cr/main.py
# See https://www.rapids.science/latest/features/empatica-tags/
EMPATICA_TAGS:
@ -663,96 +565,3 @@ HEATMAP_FEATURE_CORRELATION_MATRIX:
CORR_THRESHOLD: 0.1
CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"}
########################################################################################################################
# Data Cleaning #
########################################################################################################################
ALL_CLEANING_INDIVIDUAL:
PROVIDERS:
RAPIDS:
COMPUTE: False
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
STRAW:
COMPUTE: True
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_MINUTES # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
ROWS_NAN_THRESHOLD: 0.33 # set to 1 to disable
COLS_NAN_THRESHOLD: 0.9 # set to 1 to remove only columns that contains all (100% of) NaN
COLS_VAR_THRESHOLD: True
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
STANDARDIZATION: True
SRC_SCRIPT: src/features/all_cleaning_individual/straw/main.py
ALL_CLEANING_OVERALL:
PROVIDERS:
RAPIDS:
COMPUTE: False
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
STRAW:
COMPUTE: True
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_MINUTES # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
ROWS_NAN_THRESHOLD: 0.33 # set to 1 to disable
COLS_NAN_THRESHOLD: 0.8 # set to 1 to remove only columns that contains all (100% of) NaN
COLS_VAR_THRESHOLD: True
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
STANDARDIZATION: True
TARGET_STANDARDIZATION: False
SRC_SCRIPT: src/features/all_cleaning_overall/straw/main.py
########################################################################################################################
# Baseline #
########################################################################################################################
PARAMS_FOR_ANALYSIS:
BASELINE:
COMPUTE: True
FOLDER: data/external/baseline
CONTAINER: [results-survey637813_final.csv, # Slovenia
results-survey358134_final.csv, # Belgium 1
results-survey413767_final.csv # Belgium 2
]
QUESTION_LIST: survey637813+question_text.csv
FEATURES: [age, gender, startlanguage, limesurvey_demand, limesurvey_control, limesurvey_demand_control_ratio, limesurvey_demand_control_ratio_quartile]
CATEGORICAL_FEATURES: [gender]
TARGET:
COMPUTE: True
LABEL: appraisal_stressfulness_event_mean
ALL_LABELS: [PANAS_positive_affect_mean, PANAS_negative_affect_mean, JCQ_job_demand_mean, JCQ_job_control_mean, JCQ_supervisor_support_mean, JCQ_coworker_support_mean, appraisal_stressfulness_period_mean]
# PANAS_positive_affect_mean, PANAS_negative_affect_mean, JCQ_job_demand_mean, JCQ_job_control_mean, JCQ_supervisor_support_mean,
# JCQ_coworker_support_mean, appraisal_stressfulness_period_mean, appraisal_stressfulness_event_mean, appraisal_threat_mean, appraisal_challenge_mean

View File

@ -1,9 +0,0 @@
"_id","timestamp","device_id","call_type","call_duration","trace"
1,1587663260695,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,14,"d5e84f8af01b2728021d4f43f53a163c0c90000c"
2,1587739118007,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"47c125dc7bd163b8612cdea13724a814917b6e93"
5,1587746544891,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,95,"9cc793ffd6e88b1d850ce540b5d7e000ef5650d4"
6,1587911379859,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,63,"51fb9344e988049a3fec774c7ca622358bf80264"
7,1587992647361,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"2a862a7730cfdfaf103a9487afe3e02935fd6e02"
8,1588020039448,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",1,11,"a2c53f6a086d98622c06107780980cf1bb4e37bd"
11,1588176189024,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,65,"56589df8c830c70e330b644921ed38e08d8fd1f3"
12,1588197745079,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"cab458018a8ed3b626515e794c70b6f415318adc"
1 _id timestamp device_id call_type call_duration trace
2 1 1587663260695 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 14 d5e84f8af01b2728021d4f43f53a163c0c90000c
3 2 1587739118007 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 47c125dc7bd163b8612cdea13724a814917b6e93
4 5 1587746544891 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 95 9cc793ffd6e88b1d850ce540b5d7e000ef5650d4
5 6 1587911379859 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 63 51fb9344e988049a3fec774c7ca622358bf80264
6 7 1587992647361 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 2a862a7730cfdfaf103a9487afe3e02935fd6e02
7 8 1588020039448 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 1 11 a2c53f6a086d98622c06107780980cf1bb4e37bd
8 11 1588176189024 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 65 56589df8c830c70e330b644921ed38e08d8fd1f3
9 12 1588197745079 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 cab458018a8ed3b626515e794c70b6f415318adc

Binary file not shown.

View File

@ -1,57 +0,0 @@
label,empatica_id
uploader_79170,A0245B
uploader_89788,A02731
uploader_68294,A02705
uploader_92856,A024AF
uploader_23726,A0231C
uploader_66620,A02305
uploader_58435,A026B5
uploader_87801,A022A8
uploader_96055,A027BA
uploader_69549,A0226C
uploader_26363,A0263D
uploader_72010,A023FA
uploader_13997,A024AF
uploader_31156,A02305
uploader_63187,A027BA
uploader_94821,A022A8
uploader_65413,A023F1;A023FA
uploader_36488,A02713
uploader_91087,A0231C
uploader_35174,A025D1
uploader_73880,A02705
uploader_78650,A02731
uploader_70578,A0245B
uploader_88313,A02736
uploader_58482,A0261A
uploader_80601,A027BA
uploader_93729,A0226C
uploader_61663,A0245B
uploader_80848,A025D1
uploader_57312,A023F9;A02361;A027A0
uploader_52087,A02666
uploader_98770,A02953
uploader_51327,A0245F
uploader_11737,A02732
uploader_77440,A0264E
uploader_57277,A02422
uploader_13098,A026E5
uploader_80719,A023C8
uploader_54698,A02953
uploader_95571,A02853
uploader_21880,A024DC
uploader_92905,A02920
uploader_12108,A023F4
uploader_17436,A026E5
uploader_58440,A0273F
uploader_22172,A0245F
uploader_39250,A02422
uploader_15311,A023F9
uploader_45766,A02920
uploader_23096,A02361
uploader_78243,A02422
uploader_58777,A0245F
uploader_82941,A02666
uploader_89606,A023F4
uploader_82969,A023C8
uploader_53573,A024DC;A02361
1 label empatica_id
2 uploader_79170 A0245B
3 uploader_89788 A02731
4 uploader_68294 A02705
5 uploader_92856 A024AF
6 uploader_23726 A0231C
7 uploader_66620 A02305
8 uploader_58435 A026B5
9 uploader_87801 A022A8
10 uploader_96055 A027BA
11 uploader_69549 A0226C
12 uploader_26363 A0263D
13 uploader_72010 A023FA
14 uploader_13997 A024AF
15 uploader_31156 A02305
16 uploader_63187 A027BA
17 uploader_94821 A022A8
18 uploader_65413 A023F1;A023FA
19 uploader_36488 A02713
20 uploader_91087 A0231C
21 uploader_35174 A025D1
22 uploader_73880 A02705
23 uploader_78650 A02731
24 uploader_70578 A0245B
25 uploader_88313 A02736
26 uploader_58482 A0261A
27 uploader_80601 A027BA
28 uploader_93729 A0226C
29 uploader_61663 A0245B
30 uploader_80848 A025D1
31 uploader_57312 A023F9;A02361;A027A0
32 uploader_52087 A02666
33 uploader_98770 A02953
34 uploader_51327 A0245F
35 uploader_11737 A02732
36 uploader_77440 A0264E
37 uploader_57277 A02422
38 uploader_13098 A026E5
39 uploader_80719 A023C8
40 uploader_54698 A02953
41 uploader_95571 A02853
42 uploader_21880 A024DC
43 uploader_92905 A02920
44 uploader_12108 A023F4
45 uploader_17436 A026E5
46 uploader_58440 A0273F
47 uploader_22172 A0245F
48 uploader_39250 A02422
49 uploader_15311 A023F9
50 uploader_45766 A02920
51 uploader_23096 A02361
52 uploader_78243 A02422
53 uploader_58777 A0245F
54 uploader_82941 A02666
55 uploader_89606 A023F4
56 uploader_82969 A023C8
57 uploader_53573 A024DC;A02361

View File

@ -1,11 +0,0 @@
PHONE:
DEVICE_IDS: [4b62a655-cbf0-4ac0-a448-06726f45b56a]
PLATFORMS: [android]
LABEL: uploader_53573
START_DATE: 2021-05-21 09:21:24
END_DATE: 2021-07-12 17:32:07
EMPATICA:
DEVICE_IDS: [uploader_53573]
LABEL: uploader_53573
START_DATE: 2021-05-21 09:21:24
END_DATE: 2021-07-12 17:32:07

File diff suppressed because it is too large Load Diff

View File

@ -1,45 +0,0 @@
genre,n
System,261
Tools,96
Productivity,71
Health & Fitness,60
Finance,54
Communication,39
Music & Audio,39
Shopping,38
Lifestyle,33
Education,28
News & Magazines,24
Maps & Navigation,23
Entertainment,21
Business,18
Travel & Local,18
Books & Reference,16
Social,16
Weather,16
Food & Drink,14
Sports,14
Other,13
Photography,13
Puzzle,13
Video Players & Editors,12
Card,9
Casual,9
Personalization,8
Medical,7
Board,5
Strategy,4
House & Home,3
Trivia,3
Word,3
Adventure,2
Art & Design,2
Auto & Vehicles,2
Dating,2
Role Playing,2
STRAW,2
Simulation,2
"Board,Brain Games",1
"Entertainment,Music & Video",1
Parenting,1
Racing,1
1 genre n
2 System 261
3 Tools 96
4 Productivity 71
5 Health & Fitness 60
6 Finance 54
7 Communication 39
8 Music & Audio 39
9 Shopping 38
10 Lifestyle 33
11 Education 28
12 News & Magazines 24
13 Maps & Navigation 23
14 Entertainment 21
15 Business 18
16 Travel & Local 18
17 Books & Reference 16
18 Social 16
19 Weather 16
20 Food & Drink 14
21 Sports 14
22 Other 13
23 Photography 13
24 Puzzle 13
25 Video Players & Editors 12
26 Card 9
27 Casual 9
28 Personalization 8
29 Medical 7
30 Board 5
31 Strategy 4
32 House & Home 3
33 Trivia 3
34 Word 3
35 Adventure 2
36 Art & Design 2
37 Auto & Vehicles 2
38 Dating 2
39 Role Playing 2
40 STRAW 2
41 Simulation 2
42 Board,Brain Games 1
43 Entertainment,Music & Video 1
44 Parenting 1
45 Racing 1

View File

@ -1,3 +0,0 @@
label,start_time,length,repeats_on,repeats_value
daily,04:00:00,23H 59M 59S,every_day,0
working_day,04:00:00,18H 00M 00S,every_day,0
1 label start_time length repeats_on repeats_value
2 daily 04:00:00 23H 59M 59S every_day 0
3 working_day 04:00:00 18H 00M 00S every_day 0

View File

@ -1,2 +1,2 @@
label,length
fiveminutes,5
thirtyminutes,30
1 label length
2 fiveminutes thirtyminutes 5 30

View File

@ -1,2 +1,9 @@
label,start_time,length,repeats_on,repeats_value
threeday,00:00:00,2D 23H 59M 59S,every_day,0
daily,00:00:00,23H 59M 59S,every_day,0
morning,06:00:00,5H 59M 59S,every_day,0
afternoon,12:00:00,5H 59M 59S,every_day,0
evening,18:00:00,5H 59M 59S,every_day,0
night,00:00:00,5H 59M 59S,every_day,0
two_weeks_overlapping,00:00:00,13D 23H 59M 59S,every_day,0
weekends,00:00:00,2D 23H 59M 59S,wday,5

1 label start_time length repeats_on repeats_value
2 threeday 00:00:00 2D 23H 59M 59S every_day 0
3 daily 00:00:00 23H 59M 59S every_day 0
4 morning 06:00:00 5H 59M 59S every_day 0
5 afternoon 12:00:00 5H 59M 59S every_day 0
6 evening 18:00:00 5H 59M 59S every_day 0
7 night 00:00:00 5H 59M 59S every_day 0
8 two_weeks_overlapping 00:00:00 13D 23H 59M 59S every_day 0
9 weekends 00:00:00 2D 23H 59M 59S wday 5

File diff suppressed because it is too large Load Diff

View File

@ -1,92 +0,0 @@
Data Cleaning
=============
The goal of this module is to perform basic clean tasks on the behavioral features that RAPIDS computes. You might need to do further processing depending on your analysis objectives. This module can clean features at the individual level and at the study level. If you are interested in creating individual models (using each participant's features independently of the others) use [`ALL_CLEANING_INDIVIDUAL`]. If you are interested in creating population models (using everyone's data in the same model) use [`ALL_CLEANING_OVERALL`]
## Clean sensor features for individual participants
!!! info "File Sequence"
```bash
- data/processed/features/{pid}/all_sensor_features.csv
- data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}.csv
```
### RAPIDS provider
Parameters description for `[ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS]`:
|Key&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; | Description |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------
|`[COMPUTE]` | Set to `True` to execute the cleaning tasks described below. You can use the parameters of each task to tweak them or deactivate them|
|`[IMPUTE_SELECTED_EVENT_FEATURES]` | Fill NAs with 0 only for event-based features, see table below
|`[COLS_NAN_THRESHOLD]` | Discard columns with missing value ratios higher than `[COLS_NAN_THRESHOLD]`. Set to 1 to disable
|`[COLS_VAR_THRESHOLD]` | Set to `True` to discard columns with zero variance
|`[ROWS_NAN_THRESHOLD]` | Discard rows with missing value ratios higher than `[ROWS_NAN_THRESHOLD]`. Set to 1 to disable
|`[DATA_YIELD_FEATURE]` | `RATIO_VALID_YIELDED_HOURS` or `RATIO_VALID_YIELDED_MINUTES`
|`[DATA_YIELD_RATIO_THRESHOLD]` | Discard rows with `ratiovalidyieldedhours` or `ratiovalidyieldedminutes` feature less than `[DATA_YIELD_RATIO_THRESHOLD]`. The feature name is determined by `[DATA_YIELD_FEATURE]` parameter. Set to 0 to disable
|`DROP_HIGHLY_CORRELATED_FEATURES` | Discard highly correlated features, see table below
Parameters description for `[ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS][IMPUTE_SELECTED_EVENT_FEATURES]`:
|Parameters | Description |
|-------------------------------------- |----------------------------------------------------------------|
|`[COMPUTE]` | Set to `True` to fill NAs with 0 for phone event-based features
|`[MIN_DATA_YIELDED_MINUTES_TO_IMPUTE]` | Any feature value in a time segment instance with phone data yield > `[MIN_DATA_YIELDED_MINUTES_TO_IMPUTE]` will be replaced with a zero. See below for an explanation. |
Parameters description for `[ALL_CLEANING_INDIVIDUAL][PROVIDERS][RAPIDS][DROP_HIGHLY_CORRELATED_FEATURES]`:
|Parameters | Description |
|-------------------------------------- |----------------------------------------------------------------|
|`[COMPUTE]` | Set to `True` to drop highly correlated features
|`[MIN_OVERLAP_FOR_CORR_THRESHOLD]` | Minimum ratio of observations required per pair of columns (features) to be considered as a valid correlation.
|`[CORR_THRESHOLD]` | The absolute values of pair-wise correlations are calculated. If two variables have a valid correlation higher than `[CORR_THRESHOLD]`, we looks at the mean absolute correlation of each variable and removes the variable with the largest mean absolute correlation.
Steps to clean sensor features for individual participants. It only considers the **phone sensors** currently.
??? info "1. Fill NA with 0 for the selected event features."
Some event features should be zero instead of NA. In this step, we fill those missing features with 0 when the `phone_data_yield_rapids_ratiovalidyieldedminutes` column is higher than the `[IMPUTE_SELECTED_EVENT_FEATURES][MIN_DATA_YIELDED_MINUTES_TO_IMPUTE]` parameter. Plugins such as Activity Recognition sensor are not considered. You can skip this step by setting `[IMPUTE_SELECTED_EVENT_FEATURES][COMPUTE]` to `False`.
Take phone calls sensor as an example. If there are no calls records during a time segment for a participant, then (1) the calls sensor was not working during that time segment; or (2) the calls sensor was working and the participant did not have any calls during that time segment. To differentiate these two situations, we assume the selected sensors are working when `phone_data_yield_rapids_ratiovalidyieldedminutes > [MIN_DATA_YIELDED_MINUTES_TO_IMPUTE]`.
The following phone event-based features are considered currently:
- Application foreground: countevent, countepisode, minduration, maxduration, meanduration, sumduration.
- Battery: all features.
- Calls: count, distinctcontacts, sumduration, minduration, maxduration, meanduration, modeduration.
- Keyboard: sessioncount, averagesessionlength, changeintextlengthlessthanminusone, changeintextlengthequaltominusone, changeintextlengthequaltoone, changeintextlengthmorethanone, maxtextlength, totalkeyboardtouches.
- Messages: count, distinctcontacts.
- Screen: sumduration, maxduration, minduration, avgduration, countepisode.
- WiFi: all connected and visible features.
??? info "2. Discard unreliable rows."
Extracted features might be not reliable if the sensor only works for a short period during a time segment. In this step, we discard rows when the `phone_data_yield_rapids_ratiovalidyieldedminutes` column or the `phone_data_yield_rapids_ratiovalidyieldedhours` column is less than the `[DATA_YIELD_RATIO_THRESHOLD]` parameter. We recommend using `phone_data_yield_rapids_ratiovalidyieldedminutes` column (set `[DATA_YIELD_FEATURE]` to `RATIO_VALID_YIELDED_MINUTES`) on time segments that are shorter than two or three hours and `phone_data_yield_rapids_ratiovalidyieldedhours` (set `[DATA_YIELD_FEATURE]` to `RATIO_VALID_YIELDED_HOURS`) for longer segments. We do not recommend you to skip this step, but you can do it by setting `[DATA_YIELD_RATIO_THRESHOLD]` to 0.
??? info "3. Discard columns (features) with too many missing values."
In this step, we discard columns with missing value ratios higher than `[COLS_NAN_THRESHOLD]`. We do not recommend you to skip this step, but you can do it by setting `[COLS_NAN_THRESHOLD]` to 1.
??? info "4. Discard columns (features) with zero variance."
In this step, we discard columns with zero variance. We do not recommend you to skip this step, but you can do it by setting `[COLS_VAR_THRESHOLD]` to `False`.
??? info "5. Drop highly correlated features."
As highly correlated features might not bring additional information and will increase the complexity of a model, we drop them in this step. The absolute values of pair-wise correlations are calculated. Each correlation vector between two variables is regarded as valid only if the ratio of valid value pairs (i.e. non NA pairs) is greater than or equal to `[DROP_HIGHLY_CORRELATED_FEATURES][MIN_OVERLAP_FOR_CORR_THRESHOLD]`. If two variables have a correlation coefficient higher than `[DROP_HIGHLY_CORRELATED_FEATURES][CORR_THRESHOLD]`, we look at the mean absolute correlation of each variable and remove the variable with the largest mean absolute correlation. This step can be skipped by setting `[DROP_HIGHLY_CORRELATED_FEATURES][COMPUTE]` to False.
??? info "6. Discard rows with too many missing values."
In this step, we discard rows with missing value ratios higher than `[ROWS_NAN_THRESHOLD]`. We do not recommend you to skip this step, but you can do it by setting `[ROWS_NAN_THRESHOLD]` to 1. In other words, we are discarding time segments (e.g. days) that did not have enough data to be considered reliable. This step is similar to step 2 except the ratio is computed based on NA values instead of a phone data yield threshold.
## Clean sensor features for all participants
!!! info "File Sequence"
```bash
- data/processed/features/all_participants/all_sensor_features.csv
- data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}.csv
```
### RAPIDS provider
Parameters description and the steps are the same as the above [RAPIDS provider](#rapids-provider) section for individual participants.

View File

@ -1,17 +1,8 @@
# Change Log
## v1.8.0
- Add data stream for AWARE Micro server
- Fix the NA bug in PHONE_LOCATIONS BARNETT provider
- Fix the bug of data type for call_duration field
- Fix the index bug of heatmap_sensors_per_minute_per_time_segment
## v1.7.1
- Update docs for Git Flow section
- Update RAPIDS paper information
## v1.7.0
- Add firststeptime and laststeptime features to FITBIT_STEPS_INTRADAY RAPIDS provider
- Update tests for Fitbit steps intraday features
- Add tests for phone battery features
- Add a data cleaning module to replace NAs with 0 in selected event-based features, discard unreliable rows and columns, discard columns with zero variance, and discard highly correlated columns
## v1.6.0
- Refactor PHONE_CALLS RAPIDS provider to compute features based on call episodes or events
- Refactor PHONE_LOCATIONS DORYAB provider to compute features based on location episodes

View File

@ -5,10 +5,14 @@
## RAPIDS
If you used RAPIDS, please cite [this paper](https://www.frontiersin.org/article/10.3389/fdgth.2021.769823).
If you used RAPIDS, please cite [this paper](https://preprints.jmir.org/preprint/23246).
!!! cite "RAPIDS et al. citation"
Vega, J., Li, M., Aguillera, K., Goel, N., Joshi, E., Khandekar, K., ... & Low, C. A. (2021). Reproducible Analysis Pipeline for Data Streams (RAPIDS): Open-Source Software to Process Data Collected with Mobile Devices. Frontiers in Digital Health, 168.
Vega J, Li M, Aguillera K, Goel N, Joshi E, Durica KC, Kunta AR, Low CA
RAPIDS: Reproducible Analysis Pipeline for Data Streams Collected with Mobile Devices
JMIR Preprints. 18/08/2020:23246
DOI: 10.2196/preprints.23246
URL: https://preprints.jmir.org/preprint/23246
## DBDP (all Empatica sensors)

View File

@ -1,15 +0,0 @@
# `aware_micro_mysql`
This [data stream](../../datastreams/data-streams-introduction) handles iOS and Android sensor data collected with the [AWARE Framework's](https://awareframework.com/) [AWARE Micro](https://github.com/denzilferreira/aware-micro) server and stored in a MySQL database.
## Container
A MySQL database with a table per sensor, each containing the data for all participants. Sensor data is stored in a JSON field within each table called `data`
The script to connect and download data from this container is at:
```bash
src/data/streams/aware_micro_mysql/container.R
```
## Format
--8<---- "docs/snippets/aware_format.md"

View File

@ -16,7 +16,6 @@ For reference, these are the data streams we currently support:
| Data Stream | Device | Format | Container | Docs
|--|--|--|--|--|
| `aware_mysql`| Phone | AWARE app | MySQL | [link](../aware-mysql)
| `aware_micro_mysql`| Phone | AWARE Micro server | MySQL | [link](../aware-micro-mysql)
| `aware_csv`| Phone | AWARE app | CSV files | [link](../aware-csv)
| `aware_influxdb` (beta)| Phone | AWARE app | InfluxDB | [link](../aware-influxdb)
| `fitbitjson_mysql`| Fitbit | JSON (per [Fitbit's API](https://dev.fitbit.com/build/reference/web-api/)) | MySQL | [link](../fitbitjson-mysql)

View File

@ -127,9 +127,9 @@ git branch -d release/v[NEW_RELEASE]
```
git checkout master
git merge --ff-only develop
git push # Unlock the master branch before merging
git push
```
1. Release happens automatically after passing the tests
1. Go to [GitHub](https://github.com/carissalow/rapids/tags) and create a new release based on the newest tag `v[NEW_RELEASE]` (remember to add the change log)
## Release a Hotfix
1. Pull the latest master
@ -156,6 +156,6 @@ git branch -d hotfix/v[NEW_HOTFIX]
```
git checkout master
git merge --ff-only v[NEW_HOTFIX]
git push # Unlock the master branch before merging
git push
```
1. Release happens automatically after passing the tests
1. Go to [GitHub](https://github.com/carissalow/rapids/tags) and create a new release based on the newest tag `v[NEW_HOTFIX]` (remember to add the change log)

View File

@ -6,12 +6,6 @@ Sensor parameters description for `[PHONE_KEYBOARD]`:
|----------------|-----------------------------------------------------------------------------------------------------------------------------------
|`[CONTAINER]`| Data stream [container](../../datastreams/data-streams-introduction/) (database table, CSV file, etc.) where the keyboard data is stored
## RAPIDS provider
!!! info "Available time segments and platforms"
- Available for all time segments
- Available for Android only
!!! info "File Sequence"
```bash
- data/raw/{pid}/phone_keyboard_raw.csv

View File

@ -1,12 +1,12 @@
# Welcome to RAPIDS documentation
Reproducible Analysis Pipeline for Data Streams (RAPIDS) allows you to process smartphone and wearable data to [extract](features/feature-introduction.md) and [create](features/add-new-features.md) **behavioral features** (a.k.a. digital biomarkers), [visualize](visualizations/data-quality-visualizations.md) mobile sensor data, and [structure](analysis/complete-workflow-example.md) your analysis into reproducible workflows. Check out our [paper](https://www.frontiersin.org/article/10.3389/fdgth.2021.769823)!
Reproducible Analysis Pipeline for Data Streams (RAPIDS) allows you to process smartphone and wearable data to [extract](features/feature-introduction.md) and [create](features/add-new-features.md) **behavioral features** (a.k.a. digital biomarkers), [visualize](visualizations/data-quality-visualizations.md) mobile sensor data, and [structure](workflow-examples/analysis.md) your analysis into reproducible workflows.
RAPIDS is open source, documented, multi-platform, modular, tested, and reproducible. At the moment, we support [data streams](datastreams/data-streams-introduction) logged by smartphones, Fitbit wearables, and Empatica wearables (the latter in collaboration with the [DBDP](https://dbdp.org/)).
!!! tip "Where do I start?"
:material-power-standby: New to RAPIDS? Check our [Overview + FAQ](setup/overview/) and [minimal example](analysis/minimal)
:material-power-standby: New to RAPIDS? Check our [Overview + FAQ](setup/overview/) and [minimal example](workflow-examples/minimal)
:material-play-speed: [Install](setup/installation), [configure](setup/configuration), and [execute](setup/execution) RAPIDS to [extract](features/feature-introduction.md) and [plot](visualizations/data-quality-visualizations.md) behavioral features

View File

@ -23,10 +23,10 @@ Let's review some key concepts we use throughout these docs:
- [Add your own behavioral features](../../features/add-new-features/) (we can include them in RAPIDS if you want to share them with the community)
- [Add support for new data streams](../../datastreams/add-new-data-streams/) if yours cannot be processed by RAPIDS yet
- Create visualizations for [data quality control](../../visualizations/data-quality-visualizations/) and [feature inspection](../../visualizations/feature-visualizations/)
- [Extending RAPIDS to organize your analysis](../../analysis/complete-workflow-example/) and publish a code repository along with your code
- [Extending RAPIDS to organize your analysis](../../workflow-examples/analysis/) and publish a code repository along with your code
!!! hint
- We recommend you follow the [Minimal Example](../../analysis/minimal/) tutorial to get familiar with RAPIDS
- We recommend you follow the [Minimal Example](../../workflow-examples/minimal/) tutorial to get familiar with RAPIDS
- In order to follow any of the previous tutorials, you will have to [Install](../installation/), [Configure](../configuration/), and learn how to [Execute](../execution/) RAPIDS.

View File

@ -1,8 +1,8 @@
# Analysis Workflow Example
!!! info "TL;DR"
- In addition to using RAPIDS to extract behavioral features, create plots, and clean sensor features, you can structure your data analysis within RAPIDS (i.e. creating ML/statistical models and evaluating your models)
- We include an analysis example in RAPIDS that covers raw data processing, feature extraction, cleaning, machine learning modeling, and evaluation
- In addition to using RAPIDS to extract behavioral features and create plots, you can structure your data analysis within RAPIDS (i.e. cleaning your features and creating ML/statistical models)
- We include an analysis example in RAPIDS that covers raw data processing, cleaning, feature extraction, machine learning modeling, and evaluation
- Use this example as a guide to structure your own analysis within RAPIDS
- RAPIDS analysis workflows are compatible with your favorite data science tools and libraries
- RAPIDS analysis workflows are reproducible and we encourage you to publish them along with your research papers
@ -69,12 +69,12 @@ Note you will see a lot of warning messages, you can ignore them since they happ
??? info "6. Feature cleaning."
In this stage we perform four steps to clean our sensor feature file. First, we discard days with a data yield hour ratio less than or equal to 0.75, i.e. we include days with at least 18 hours of data. Second, we drop columns (features) with more than 30% of missing rows. Third, we drop columns with zero variance. Fourth, we drop rows (days) with more than 30% of missing columns (features). In this cleaning stage several parameters are created and exposed in `example_profile/example_config.yaml`.
After this step, we kept 173 features over 11 days for the individual model of p01, 101 features over 12 days for the individual model of p02 and 117 features over 22 days for the population model. Note that the difference in the number of features between p01 and p02 is mostly due to iOS restrictions that stops researchers from collecting the same number of sensors than in Android phones.
After this step, we kept 163 features over 11 days for the individual model of p01, 101 features over 12 days for the individual model of p02 and 109 features over 20 days for the population model. Note that the difference in the number of features between p01 and p02 is mostly due to iOS restrictions that stops researchers from collecting the same number of sensors than in Android phones.
Feature cleaning for the individual models is done in the `clean_sensor_features_for_individual_participants` rule and for the population model in the `clean_sensor_features_for_all_participants` rule in `rules/models.smk`.
??? info "7. Merge features and targets."
In this step we merge the cleaned features and target labels for our individual models in the `merge_features_and_targets_for_individual_model` rule in `rules/features.smk`. Additionally, we merge the cleaned features, target labels, and demographic features of our two participants for the population model in the `merge_features_and_targets_for_population_model` rule in `rules/features.smk`. These two merged files are the input for our individual and population models.
In this step we merge the cleaned features and target labels for our individual models in the `merge_features_and_targets_for_individual_model` rule in `rules/models.smk`. Additionally, we merge the cleaned features, target labels, and demographic features of our two participants for the population model in the `merge_features_and_targets_for_population_model` rule in `rules/models.smk`. These two merged files are the input for our individual and population models.
??? info "8. Modelling."
This stage has three phases: model building, training and evaluation.

View File

@ -1,39 +0,0 @@
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !
# !
"""
Please do not make any changes, as RAPIDS is running on tmux server ...
"""
# !

View File

@ -1,30 +1,112 @@
name: rapids
name: rapids202108
channels:
- conda-forge
- defaults
dependencies:
- auto-sklearn
- hmmlearn
- imbalanced-learn
- jsonschema
- lightgbm
- matplotlib
- numpy
- pandas
- peakutils
- pip
- plotly
- python-dateutil
- pytz
- pywavelets
- pyyaml
- scikit-learn
- scipy
- seaborn
- setuptools
- bioconda::snakemake
- bioconda::snakemake-minimal
- tqdm
- xgboost
- pip:
- biosppy
- cr_features>=0.2
- _py-xgboost-mutex=2.0
- appdirs=1.4.4
- arrow=0.16.0
- asn1crypto=1.4.0
- astropy=4.2.1
- attrs=20.3.0
- binaryornot=0.4.4
- blas=1.0
- brotlipy=0.7.0
- bzip2=1.0.8
- ca-certificates=2021.7.5
- certifi=2021.5.30
- cffi=1.14.4
- chardet=3.0.4
- click=7.1.2
- cookiecutter=1.6.0
- cryptography=3.3.1
- datrie=0.8.2
- docutils=0.16
- future=0.18.2
- gitdb=4.0.5
- gitdb2=4.0.2
- gitpython=3.1.11
- idna=2.10
- imbalanced-learn=0.6.2
- importlib-metadata=2.0.0
- importlib_metadata=2.0.0
- intel-openmp=2019.4
- jinja2=2.11.2
- jinja2-time=0.2.0
- joblib=1.0.0
- jsonschema=3.2.0
- libblas=3.8.0
- libcblas=3.8.0
- libcxx=10.0.0
- libedit=3.1.20191231
- libffi=3.3
- libgfortran
- liblapack=3.8.0
- libopenblas=0.3.10
- libxgboost=0.90
- lightgbm=3.1.1
- llvm-openmp=10.0.0
- markupsafe=1.1.1
- mkl
- mkl-service=2.3.0
- mkl_fft=1.2.0
- mkl_random=1.1.1
- more-itertools=8.6.0
- ncurses=6.2
- numpy=1.19.2
- numpy-base=1.19.2
- openblas=0.3.4
- openssl=1.1.1k
- pandas=1.1.5
- pbr=5.5.1
- pip=20.3.3
- plotly=4.14.1
- poyo=0.5.0
- psutil=5.7.2
- py-xgboost=0.90
- pycparser=2.20
- pyerfa=1.7.1.1
- pyopenssl=20.0.1
- pysocks=1.7.1
- python=3.7.9
- python-dateutil=2.8.1
- python_abi=3.7
- pytz=2020.4
- pyyaml=5.3.1
- readline=8.0
- requests=2.25.0
- retrying=1.3.3
- scikit-learn=0.23.2
- scipy=1.5.2
- setuptools=51.0.0
- six=1.15.0
- smmap=3.0.4
- smmap2=3.0.1
- sqlite=3.33.0
- threadpoolctl=2.1.0
- tk=8.6.10
- tqdm=4.62.0
- urllib3=1.25.11
- wheel=0.36.2
- whichcraft=0.6.1
- wrapt=1.12.1
- xgboost=0.90
- xz=5.2.5
- yaml=0.2.5
- zipp=3.4.0
- zlib=1.2.11
- pip:
- amply==0.1.4
- configargparse==0.15.1
- decorator==4.4.2
- ipython-genutils==0.2.0
- jupyter-core==4.6.3
- nbformat==5.0.7
- pulp==2.4
- pyparsing==2.4.7
- pyrsistent==0.15.5
- ratelimiter==1.2.0.post0
- snakemake==5.30.2
- toposort==1.5
- traitlets==4.3.3
prefix: /usr/local/Caskroom/miniconda/base/envs/rapids202108

View File

@ -3,7 +3,7 @@ include: "../rules/common.smk"
include: "../rules/renv.smk"
include: "../rules/preprocessing.smk"
include: "../rules/features.smk"
include: "../rules/models_example.smk"
include: "../rules/models.smk"
include: "../rules/reports.smk"
import itertools
@ -384,14 +384,6 @@ if config["HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT"]["PLOT"]:
if config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["PLOT"]:
files_to_compute.append("reports/data_exploration/heatmap_feature_correlation_matrix.html")
# Data Cleaning
for provider in config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() +".csv", pid=config["PIDS"]))
for provider in config["ALL_CLEANING_OVERALL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_OVERALL"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +".csv"))
# Analysis Workflow Example
models, scalers = [], []
for model_name in config["PARAMS_FOR_ANALYSIS"]["MODEL_NAMES"]:
@ -409,6 +401,7 @@ files_to_compute.extend(expand("data/raw/{pid}/participant_target_with_datetime.
files_to_compute.extend(expand("data/processed/targets/{pid}/parsed_targets.csv", pid=config["PIDS"]))
# Individual model
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
files_to_compute.extend(expand(
@ -421,6 +414,7 @@ files_to_compute.extend(expand(
scaler=scalers))
# Population model
files_to_compute.append("data/processed/features/all_participants/all_sensor_features_cleaned.csv")
files_to_compute.append("data/processed/models/population_model/input.csv")
files_to_compute.extend(expand("data/processed/models/population_model/output_{cv_method}/baselines.csv", cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
files_to_compute.extend(expand(

View File

@ -84,7 +84,6 @@ PHONE_APPLICATIONS_CRASHES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
PACKAGE_NAMES_HASHED: False
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
@ -94,7 +93,6 @@ PHONE_APPLICATIONS_FOREGROUND:
APPLICATION_CATEGORIES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
PACKAGE_NAMES_HASHED: False
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
PROVIDERS:
@ -122,7 +120,6 @@ PHONE_APPLICATIONS_NOTIFICATIONS:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: False # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
PACKAGE_NAMES_HASHED: False
SCRAPE_MISSING_CATEGORIES: False # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
PROVIDERS: # None implemented yet but this sensor can be used in PHONE_DATA_YIELD
@ -524,7 +521,7 @@ HEATMAP_SENSORS_PER_MINUTE_PER_TIME_SEGMENT:
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#4-heatmap-of-sensor-row-count
HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT:
PLOT: False
PLOT: True
SENSORS: [PHONE_ACTIVITY_RECOGNITION, PHONE_APPLICATIONS_FOREGROUND, PHONE_BATTERY, PHONE_BLUETOOTH, PHONE_CALLS, PHONE_CONVERSATION, PHONE_LIGHT, PHONE_LOCATIONS, PHONE_MESSAGES, PHONE_SCREEN, PHONE_WIFI_CONNECTED, PHONE_WIFI_VISIBLE]
# Features ------
@ -537,46 +534,6 @@ HEATMAP_FEATURE_CORRELATION_MATRIX:
CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"}
########################################################################################################################
# Data Cleaning #
########################################################################################################################
ALL_CLEANING_INDIVIDUAL:
PROVIDERS:
RAPIDS:
COMPUTE: True
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 0.3 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0.75 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: False
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
ALL_CLEANING_OVERALL:
PROVIDERS:
RAPIDS:
COMPUTE: True
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 0.3 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0.75 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: False
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
########################################################################################################################
# Analysis Workflow Example #
@ -594,6 +551,12 @@ PARAMS_FOR_ANALYSIS:
TARGET:
FOLDER: data/external/example_workflow
CONTAINER: participant_target.csv
# Cleaning Parameters
COLS_NAN_THRESHOLD: 0.3
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 0.3
DATA_YIELDED_HOURS_RATIO_THRESHOLD: 0.75
MODEL_NAMES: [LogReg, kNN , SVM, DT, RF, GB, XGBoost, LightGBM]
CV_METHODS: [LeaveOneOut]

View File

@ -74,7 +74,7 @@ extra_css:
nav:
- Home: 'index.md'
- Overview: setup/overview.md
- Minimal Example: analysis/minimal.md
- Minimal Example: workflow-examples/minimal.md
- Citation: citation.md
- Contributing: contributing.md
- Setup:
@ -85,7 +85,6 @@ nav:
- Introduction: datastreams/data-streams-introduction.md
- Phone:
- aware_mysql: datastreams/aware-mysql.md
- aware_micro_mysql: datastreams/aware-micro-mysql.md
- aware_csv: datastreams/aware-csv.md
- aware_influxdb (beta): datastreams/aware-influxdb.md
- Mandatory Phone Format: datastreams/mandatory-phone-format.md
@ -141,9 +140,8 @@ nav:
- Visualizations:
- Data Quality: visualizations/data-quality-visualizations.md
- Features: visualizations/feature-visualizations.md
- Analysis:
- Data Cleaning: analysis/data-cleaning.md
- Complete Workflow Example: analysis/complete-workflow-example.md
- Analysis Workflows:
- Complete Example: workflow-examples/analysis.md
- Developers:
- Git Flow: developers/git-flow.md
- Remote Support: developers/remote-support.md

View File

@ -1,33 +0,0 @@
Warning: 1241 parsing failures.
row col expected actual file
1 is_system_app an integer TRUE 'data/raw/p011/phone_applications_foreground_with_datetime_with_categories.csv'
2 is_system_app an integer FALSE 'data/raw/p011/phone_applications_foreground_with_datetime_with_categories.csv'
3 is_system_app an integer TRUE 'data/raw/p011/phone_applications_foreground_with_datetime_with_categories.csv'
4 is_system_app an integer TRUE 'data/raw/p011/phone_applications_foreground_with_datetime_with_categories.csv'
5 is_system_app an integer TRUE 'data/raw/p011/phone_applications_foreground_with_datetime_with_categories.csv'
... ............. .......... ...... ...............................................................................
See problems(...) for more details.
Warning message:
The following named parsers don't match the column names: application_name
Error: Problem with `filter()` input `..1`.
✖ object 'application_name' not found
Input `..1` is `!is.na(application_name)`.
Backtrace:
1. ├─`%>%`(...)
2. ├─dplyr::mutate(...)
3. ├─utils::head(., -1)
4. ├─dplyr::select(., -c("timestamp"))
5. ├─dplyr::filter(., !is.na(application_name))
6. ├─dplyr:::filter.data.frame(., !is.na(application_name))
7. │ └─dplyr:::filter_rows(.data, ...)
8. │ ├─base::withCallingHandlers(...)
9. │ └─mask$eval_all_filter(dots, env_filter)
10. └─base::.handleSimpleError(...)
11. └─dplyr:::h(simpleError(msg, call))
Execution halted
[Mon Dec 13 17:19:06 2021]
Error in rule app_episodes:
jobid: 54
output: data/interim/p011/phone_app_episodes.csv

View File

@ -1,5 +0,0 @@
Warning message:
In barnett_daily_features(snakemake) :
Barnett's location features cannot be computed for data or time segments that do not span one or more entire days (00:00:00 to 23:59:59). Values below point to the problem:
Location data rows within a daily time segment: 0
Location data time span in days: 398.6

707
renv.lock

File diff suppressed because it is too large Load Diff

View File

@ -14,6 +14,9 @@ local({
# signal that we're loading renv during R startup
Sys.setenv("RENV_R_INITIALIZING" = "true")
on.exit(Sys.unsetenv("RENV_R_INITIALIZING"), add = TRUE)
if(grepl("Darwin", Sys.info()["sysname"], fixed = TRUE) & grepl("ARM64", Sys.info()["version"], fixed = TRUE)) # M1 Macs
Sys.setenv("TZDIR" = file.path(R.home(), "share", "zoneinfo"))
# signal that we've consented to use renv
options(renv.consent = TRUE)

View File

@ -40,17 +40,6 @@ def find_features_files(wildcards):
feature_files.extend(expand("data/interim/{{pid}}/{sensor_key}_features/{sensor_key}_{language}_{provider_key}.csv", sensor_key=wildcards.sensor_key.lower(), language=get_script_language(provider["SRC_SCRIPT"]), provider_key=provider_key.lower()))
return(feature_files)
def find_joint_non_empatica_sensor_files(wildcards):
joined_files = []
for config_key in config.keys():
if config_key.startswith(("PHONE", "FITBIT")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
for provider_key, provider in config[config_key]["PROVIDERS"].items():
if "COMPUTE" in provider.keys() and provider["COMPUTE"]:
joined_files.append("data/processed/features/{pid}/" + config_key.lower() + ".csv")
break
return joined_files
def optional_steps_sleep_input(wildcards):
if config["FITBIT_STEPS_INTRADAY"]["EXCLUDE_SLEEP"]["FITBIT_BASED"]["EXCLUDE"]:
return "data/raw/{pid}/fitbit_sleep_summary_raw.csv"
@ -125,16 +114,7 @@ def input_tzcodes_file(wilcards):
if not config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"].lower().endswith(".csv"):
raise ValueError("[TIMEZONE][MULTIPLE][TZCODES_FILE] should point to a CSV file, instead you typed: " + config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"])
if not Path(config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"]).exists():
try:
config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
except KeyError:
raise ValueError("To create TZCODES_FILE, a list of timezones should be created " +
"with the rule preprocessing.smk/prepare_tzcodes_file " +
"which will create a file specified as config['TIMEZONE']['MULTIPLE']['TZ_FILE']." +
"\n An alternative is to provide the file manually:" +
"[TIMEZONE][MULTIPLE][TZCODES_FILE] should point to a CSV file," +
"but the file in the path you typed does not exist: " +
config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"])
raise ValueError("[TIMEZONE][MULTIPLE][TZCODES_FILE] should point to a CSV file, the file in the path you typed does not exist: " + config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"])
return [config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"]]
return []

View File

@ -32,7 +32,7 @@ rule phone_data_yield_r_features:
output:
"data/interim/{pid}/phone_data_yield_features/phone_data_yield_r_{provider_key}.csv"
script:
"../src/features/entry.R"
"../src/features/entry.R"
rule phone_accelerometer_python_features:
input:
@ -324,40 +324,6 @@ rule conversation_r_features:
script:
"../src/features/entry.R"
rule preprocess_esm:
input: "data/raw/{pid}/phone_esm_with_datetime.csv"
params:
scales=lambda wildcards: config["PHONE_ESM"]["PROVIDERS"]["STRAW"]["SCALES"]
output: "data/interim/{pid}/phone_esm_clean.csv"
script:
"../src/features/phone_esm/straw/preprocess.py"
rule esm_features:
input:
sensor_data = "data/interim/{pid}/phone_esm_clean.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
params:
provider = lambda wildcards: config["PHONE_ESM"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "phone_esm",
scales=lambda wildcards: config["PHONE_ESM"]["PROVIDERS"][wildcards.provider_key.upper()]["SCALES"]
output: "data/interim/{pid}/phone_esm_features/phone_esm_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule phone_speech_python_features:
input:
sensor_data = "data/raw/{pid}/phone_speech_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
params:
provider = lambda wildcards: config["PHONE_SPEECH"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "phone_speech"
output:
"data/interim/{pid}/phone_speech_features/phone_speech_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule phone_keyboard_python_features:
input:
sensor_data = "data/raw/{pid}/phone_keyboard_with_datetime.csv",
@ -795,6 +761,22 @@ rule fitbit_sleep_intraday_r_features:
script:
"../src/features/entry.R"
rule merge_sensor_features_for_individual_participants:
input:
feature_files = input_merge_sensor_features_for_individual_participants
output:
"data/processed/features/{pid}/all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule merge_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"])
output:
"data/processed/features/all_participants/all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_all_participants.R"
rule empatica_accelerometer_python_features:
input:
sensor_data = "data/raw/{pid}/empatica_accelerometer_with_datetime.csv",
@ -804,8 +786,7 @@ rule empatica_accelerometer_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_accelerometer"
output:
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}.csv",
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -831,8 +812,7 @@ rule empatica_heartrate_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_heartrate"
output:
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}.csv",
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -858,8 +838,7 @@ rule empatica_temperature_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_temperature"
output:
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}.csv",
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -885,8 +864,7 @@ rule empatica_electrodermal_activity_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_electrodermal_activity"
output:
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}.csv",
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -912,8 +890,7 @@ rule empatica_blood_volume_pulse_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_blood_volume_pulse"
output:
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}.csv",
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -939,8 +916,7 @@ rule empatica_inter_beat_interval_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_inter_beat_interval"
output:
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}.csv",
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}_windows.csv"
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}.csv"
script:
"../src/features/entry.py"
@ -982,48 +958,3 @@ rule empatica_tags_r_features:
"data/interim/{pid}/empatica_tags_features/empatica_tags_r_{provider_key}.csv"
script:
"../src/features/entry.R"
rule merge_sensor_features_for_individual_participants:
input:
feature_files = input_merge_sensor_features_for_individual_participants
output:
"data/processed/features/{pid}/all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule merge_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"])
output:
"data/processed/features/all_participants/all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_all_participants.R"
rule clean_sensor_features_for_individual_participants:
input:
sensor_data = rules.merge_sensor_features_for_individual_participants.output
wildcard_constraints:
pid = "("+"|".join(config["PIDS"])+")"
params:
provider = lambda wildcards: config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_individual"
output:
"data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"
rule clean_sensor_features_for_all_participants:
input:
sensor_data = rules.merge_sensor_features_for_all_participants.output
params:
provider = lambda wildcards: config["ALL_CLEANING_OVERALL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_overall",
target = "{target}"
output:
"data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}_{script_extension}_({target}).csv"
script:
"../src/features/entry.{params.script_extension}"

View File

@ -1,52 +1,165 @@
rule merge_baseline_data:
input:
data = expand(config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["FOLDER"] + "/{container}", container=config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["CONTAINER"])
output:
"data/raw/baseline_merged.csv"
script:
"../src/data/merge_baseline_data.py"
rule download_baseline_data:
rule download_demographic_data:
input:
participant_file = "data/external/participant_files/{pid}.yaml",
data = "data/raw/baseline_merged.csv"
data = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FOLDER"] + "/" + config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CONTAINER"]
output:
"data/raw/{pid}/participant_baseline_raw.csv"
"data/raw/{pid}/participant_info_raw.csv"
script:
"../src/data/download_baseline_data.py"
"../src/data/workflow_example/download_demographic_data.R"
rule baseline_features:
rule demographic_features:
input:
"data/raw/{pid}/participant_baseline_raw.csv"
participant_info = "data/raw/{pid}/participant_info_raw.csv"
params:
pid="{pid}",
features=config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["FEATURES"],
question_filename=config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["FOLDER"] + "/" + config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["QUESTION_LIST"]
pid = "{pid}",
features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"]
output:
interim="data/interim/{pid}/baseline_questionnaires.csv",
features="data/processed/features/{pid}/baseline_features.csv"
"data/processed/features/{pid}/demographic_features.csv"
script:
"../src/data/baseline_features.py"
"../src/features/workflow_example/demographic_features.py"
rule select_target:
rule download_target_data:
input:
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
participant_file = "data/external/participant_files/{pid}.yaml",
data = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["FOLDER"] + "/" + config["PARAMS_FOR_ANALYSIS"]["TARGET"]["CONTAINER"]
output:
"data/raw/{pid}/participant_target_raw.csv"
script:
"../src/data/workflow_example/download_target_data.R"
rule target_readable_datetime:
input:
sensor_input = "data/raw/{pid}/participant_target_raw.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
device_type = "fitbit",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/participant_target_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule parse_targets:
input:
targets = "data/raw/{pid}/participant_target_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
output:
"data/processed/targets/{pid}/parsed_targets.csv"
script:
"../src/models/workflow_example/parse_targets.py"
rule clean_sensor_features_for_individual_participants:
input:
rules.merge_sensor_features_for_individual_participants.output
params:
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
data_yielded_hours_ratio_threshold = config["PARAMS_FOR_ANALYSIS"]["DATA_YIELDED_HOURS_RATIO_THRESHOLD"],
output:
"data/processed/features/{pid}/all_sensor_features_cleaned.csv"
script:
"../src/models/workflow_example/clean_sensor_features.R"
rule clean_sensor_features_for_all_participants:
input:
rules.merge_sensor_features_for_all_participants.output
params:
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
data_yielded_hours_ratio_threshold = config["PARAMS_FOR_ANALYSIS"]["DATA_YIELDED_HOURS_RATIO_THRESHOLD"],
output:
"data/processed/features/all_participants/all_sensor_features_cleaned.csv"
script:
"../src/models/workflow_example/clean_sensor_features.R"
rule merge_features_and_targets_for_individual_model:
input:
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned.csv",
targets = "data/processed/targets/{pid}/parsed_targets.csv",
output:
"data/processed/models/individual_model/{pid}/input.csv"
script:
"../src/models/select_targets.py"
"../src/models/workflow_example/merge_features_and_targets_for_individual_model.py"
rule merge_features_and_targets_for_population_model:
input:
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py_({target}).csv",
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
params:
target_variable="{target}"
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned.csv",
demographic_features = expand("data/processed/features/{pid}/demographic_features.csv", pid=config["PIDS"]),
targets = expand("data/processed/targets/{pid}/parsed_targets.csv", pid=config["PIDS"]),
output:
"data/processed/models/population_model/input_{target}.csv"
"data/processed/models/population_model/input.csv"
script:
"../src/models/merge_features_and_targets_for_population_model.py"
"../src/models/workflow_example/merge_features_and_targets_for_population_model.py"
rule baselines_for_individual_model:
input:
"data/processed/models/individual_model/{pid}/input.csv"
params:
cv_method = "{cv_method}",
colnames_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"],
output:
"data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv"
log:
"data/processed/models/individual_model/{pid}/output_{cv_method}/baselines_notes.log"
script:
"../src/models/workflow_example/baselines.py"
rule baselines_for_population_model:
input:
"data/processed/models/population_model/input.csv"
params:
cv_method = "{cv_method}",
colnames_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"],
output:
"data/processed/models/population_model/output_{cv_method}/baselines.csv"
log:
"data/processed/models/population_model/output_{cv_method}/baselines_notes.log"
script:
"../src/models/workflow_example/baselines.py"
rule modelling_for_individual_participants:
input:
data = "data/processed/models/individual_model/{pid}/input.csv"
params:
model = "{model}",
cv_method = "{cv_method}",
scaler = "{scaler}",
categorical_operators = config["PARAMS_FOR_ANALYSIS"]["CATEGORICAL_OPERATORS"],
categorical_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CATEGORICAL_FEATURES"],
model_hyperparams = config["PARAMS_FOR_ANALYSIS"]["MODEL_HYPERPARAMS"],
output:
fold_predictions = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_predictions.csv",
fold_metrics = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_metrics.csv",
overall_results = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/overall_results.csv",
fold_feature_importances = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_feature_importances.csv"
log:
"data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/notes.log"
script:
"../src/models/workflow_example/modelling.py"
rule modelling_for_all_participants:
input:
data = "data/processed/models/population_model/input.csv"
params:
model = "{model}",
cv_method = "{cv_method}",
scaler = "{scaler}",
categorical_operators = config["PARAMS_FOR_ANALYSIS"]["CATEGORICAL_OPERATORS"],
categorical_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CATEGORICAL_FEATURES"],
model_hyperparams = config["PARAMS_FOR_ANALYSIS"]["MODEL_HYPERPARAMS"],
output:
fold_predictions = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_predictions.csv",
fold_metrics = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_metrics.csv",
overall_results = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/overall_results.csv",
fold_feature_importances = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_feature_importances.csv"
log:
"data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/notes.log"
script:
"../src/models/workflow_example/modelling.py"

View File

@ -1,139 +0,0 @@
rule download_demographic_data:
input:
participant_file = "data/external/participant_files/{pid}.yaml",
data = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FOLDER"] + "/" + config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CONTAINER"]
output:
"data/raw/{pid}/participant_info_raw.csv"
script:
"../src/data/workflow_example/download_demographic_data.R"
rule demographic_features:
input:
participant_info = "data/raw/{pid}/participant_info_raw.csv"
params:
pid = "{pid}",
features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"]
output:
"data/processed/features/{pid}/demographic_features.csv"
script:
"../src/features/workflow_example/demographic_features.py"
rule download_target_data:
input:
participant_file = "data/external/participant_files/{pid}.yaml",
data = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["FOLDER"] + "/" + config["PARAMS_FOR_ANALYSIS"]["TARGET"]["CONTAINER"]
output:
"data/raw/{pid}/participant_target_raw.csv"
script:
"../src/data/workflow_example/download_target_data.R"
rule target_readable_datetime:
input:
sensor_input = "data/raw/{pid}/participant_target_raw.csv",
time_segments = "data/interim/time_segments/{pid}_time_segments.csv",
pid_file = "data/external/participant_files/{pid}.yaml",
tzcodes_file = input_tzcodes_file,
params:
device_type = "fitbit",
timezone_parameters = config["TIMEZONE"],
pid = "{pid}",
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/participant_target_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule parse_targets:
input:
targets = "data/raw/{pid}/participant_target_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
output:
"data/processed/targets/{pid}/parsed_targets.csv"
script:
"../src/models/workflow_example/parse_targets.py"
rule merge_features_and_targets_for_individual_model:
input:
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_rapids.csv",
targets = "data/processed/targets/{pid}/parsed_targets.csv",
output:
"data/processed/models/individual_model/{pid}/input.csv"
script:
"../src/models/workflow_example/merge_features_and_targets_for_individual_model.py"
rule merge_features_and_targets_for_population_model:
input:
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_rapids.csv",
demographic_features = expand("data/processed/features/{pid}/demographic_features.csv", pid=config["PIDS"]),
targets = expand("data/processed/targets/{pid}/parsed_targets.csv", pid=config["PIDS"]),
output:
"data/processed/models/population_model/input.csv"
script:
"../src/models/workflow_example/merge_features_and_targets_for_population_model.py"
rule baselines_for_individual_model:
input:
"data/processed/models/individual_model/{pid}/input.csv"
params:
cv_method = "{cv_method}",
colnames_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"],
output:
"data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv"
log:
"data/processed/models/individual_model/{pid}/output_{cv_method}/baselines_notes.log"
script:
"../src/models/workflow_example/baselines.py"
rule baselines_for_population_model:
input:
"data/processed/models/population_model/input.csv"
params:
cv_method = "{cv_method}",
colnames_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["FEATURES"],
output:
"data/processed/models/population_model/output_{cv_method}/baselines.csv"
log:
"data/processed/models/population_model/output_{cv_method}/baselines_notes.log"
script:
"../src/models/workflow_example/baselines.py"
rule modelling_for_individual_participants:
input:
data = "data/processed/models/individual_model/{pid}/input.csv"
params:
model = "{model}",
cv_method = "{cv_method}",
scaler = "{scaler}",
categorical_operators = config["PARAMS_FOR_ANALYSIS"]["CATEGORICAL_OPERATORS"],
categorical_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CATEGORICAL_FEATURES"],
model_hyperparams = config["PARAMS_FOR_ANALYSIS"]["MODEL_HYPERPARAMS"],
output:
fold_predictions = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_predictions.csv",
fold_metrics = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_metrics.csv",
overall_results = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/overall_results.csv",
fold_feature_importances = "data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/fold_feature_importances.csv"
log:
"data/processed/models/individual_model/{pid}/output_{cv_method}/{model}/{scaler}/notes.log"
script:
"../src/models/workflow_example/modelling.py"
rule modelling_for_all_participants:
input:
data = "data/processed/models/population_model/input.csv"
params:
model = "{model}",
cv_method = "{cv_method}",
scaler = "{scaler}",
categorical_operators = config["PARAMS_FOR_ANALYSIS"]["CATEGORICAL_OPERATORS"],
categorical_demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC"]["CATEGORICAL_FEATURES"],
model_hyperparams = config["PARAMS_FOR_ANALYSIS"]["MODEL_HYPERPARAMS"],
output:
fold_predictions = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_predictions.csv",
fold_metrics = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_metrics.csv",
overall_results = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/overall_results.csv",
fold_feature_importances = "data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/fold_feature_importances.csv"
log:
"data/processed/models/population_model/output_{cv_method}/{model}/{scaler}/notes.log"
script:
"../src/models/workflow_example/modelling.py"

View File

@ -4,36 +4,6 @@ rule create_example_participant_files:
shell:
"echo 'PHONE:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n PLATFORMS: [android]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example01.yaml && echo 'PHONE:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n PLATFORMS: [ios]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example02.yaml"
# rule query_usernames_device_empatica_ids:
# params:
# baseline_folder = "/mnt/e/STRAWbaseline/"
# output:
# usernames_file = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"],
# timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
# script:
# "../../participants/prepare_usernames_file.py"
rule prepare_tzcodes_file:
input:
timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
output:
tzcodes_file = config["TIMEZONE"]["MULTIPLE"]["TZCODES_FILE"]
script:
"../tools/create_multi_timezones_file.py"
rule prepare_participants_csv:
input:
username_list = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"]
params:
data_configuration = config["PHONE_DATA_STREAMS"][config["PHONE_DATA_STREAMS"]["USE"]],
participants_table = "participants",
device_id_table = "esm",
start_end_date_table = "esm"
output:
participants_file = config["CREATE_PARTICIPANT_FILES"]["CSV_FILE_PATH"]
script:
"../src/data/translate_usernames_into_participants_data.R"
rule create_participants_files:
input:
participants_file = config["CREATE_PARTICIPANT_FILES"]["CSV_FILE_PATH"]
@ -177,6 +147,7 @@ rule resample_episodes_with_datetime:
script:
"../src/data/datetime/readable_datetime.R"
rule phone_application_categories:
input:
"data/raw/{pid}/phone_applications_{type}_with_datetime.csv"
@ -247,33 +218,5 @@ rule empatica_readable_datetime:
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
resources:
mem_mb=50000
script:
"../src/data/datetime/readable_datetime.R"
rule extract_event_information_from_esm:
input:
esm_raw_input = "data/raw/{pid}/phone_esm_raw.csv",
pid_file = "data/external/participant_files/{pid}.yaml"
params:
stage = "extract",
pid = "{pid}"
output:
"data/raw/ers/{pid}_ers.csv",
"data/raw/ers/{pid}_stress_event_targets.csv"
script:
"../src/features/phone_esm/straw/process_user_event_related_segments.py"
rule merge_event_related_segments_files:
input:
ers_files = expand("data/raw/ers/{pid}_ers.csv", pid=config["PIDS"]),
se_files = expand("data/raw/ers/{pid}_stress_event_targets.csv", pid=config["PIDS"])
params:
stage = "merge"
output:
"data/external/straw_events.csv",
"data/external/stress_event_targets.csv"
script:
"../src/features/phone_esm/straw/process_user_event_related_segments.py"

View File

@ -1,182 +0,0 @@
import numpy as np
import pandas as pd
pid = snakemake.params["pid"]
requested_features = snakemake.params["features"]
baseline_interim = pd.DataFrame(columns=["qid", "question", "score_original", "score"])
baseline_features = pd.DataFrame(columns=requested_features)
question_filename = snakemake.params["question_filename"]
JCQ_DEMAND = "JobEisen"
JCQ_CONTROL = "JobControle"
dict_JCQ_demand_control_reverse = {
JCQ_DEMAND: {
3: " [Od mene se ne zahteva,",
4: " [Imam dovolj časa, da končam",
5: " [Pri svojem delu se ne srečujem s konfliktnimi",
},
JCQ_CONTROL: {
2: " |Moje delo vključuje veliko ponavljajočega",
6: " [Pri svojem delu imam zelo malo svobode",
},
}
LIMESURVEY_JCQ_MIN = 1
LIMESURVEY_JCQ_MAX = 4
DEMAND_CONTROL_RATIO_MIN = 5 / (9 * 4)
DEMAND_CONTROL_RATIO_MAX = (4 * 5) / 9
JCQ_NORMS = {
"F": {
0: DEMAND_CONTROL_RATIO_MIN,
1: 0.45,
2: 0.52,
3: 0.62,
4: DEMAND_CONTROL_RATIO_MAX,
},
"M": {
0: DEMAND_CONTROL_RATIO_MIN,
1: 0.41,
2: 0.48,
3: 0.56,
4: DEMAND_CONTROL_RATIO_MAX,
},
}
participant_info = pd.read_csv(snakemake.input[0], parse_dates=["date_of_birth"])
if not participant_info.empty:
if "age" in requested_features:
now = pd.Timestamp("now")
baseline_features.loc[0, "age"] = (
now - participant_info.loc[0, "date_of_birth"]
).days / 365.25245
if "gender" in requested_features:
baseline_features.loc[0, "gender"] = participant_info.loc[0, "gender"]
if "startlanguage" in requested_features:
baseline_features.loc[0, "startlanguage"] = participant_info.loc[
0, "startlanguage"
]
if (
("limesurvey_demand" in requested_features)
or ("limesurvey_control" in requested_features)
or ("limesurvey_demand_control_ratio" in requested_features)
):
participant_info_t = participant_info.T
rows_baseline = participant_info_t.index
if ("limesurvey_demand" in requested_features) or (
"limesurvey_demand_control_ratio" in requested_features
):
# Find questions about demand, but disregard time (duration of filling in questionnaire)
rows_demand = rows_baseline.str.startswith(
JCQ_DEMAND
) & ~rows_baseline.str.endswith("Time")
limesurvey_demand = (
participant_info_t[rows_demand]
.reset_index()
.rename(columns={"index": "question", 0: "score_original"})
)
# Extract question IDs from names such as JobEisen[3]
limesurvey_demand["qid"] = (
limesurvey_demand["question"].str.extract(r"\[(\d+)\]").astype(int)
)
limesurvey_demand["score"] = limesurvey_demand["score_original"]
# Identify rows that include questions to be reversed.
rows_demand_reverse = limesurvey_demand["qid"].isin(
dict_JCQ_demand_control_reverse[JCQ_DEMAND].keys()
)
# Reverse the score, so that the maximum value becomes the minimum etc.
limesurvey_demand.loc[rows_demand_reverse, "score"] = (
LIMESURVEY_JCQ_MAX
+ LIMESURVEY_JCQ_MIN
- limesurvey_demand.loc[rows_demand_reverse, "score_original"]
)
baseline_interim = pd.concat([baseline_interim, limesurvey_demand], axis=0, ignore_index=True)
if "limesurvey_demand" in requested_features:
baseline_features.loc[0, "limesurvey_demand"] = limesurvey_demand[
"score"
].sum()
if ("limesurvey_control" in requested_features) or (
"limesurvey_demand_control_ratio" in requested_features
):
# Find questions about control, but disregard time (duration of filling in questionnaire)
rows_control = rows_baseline.str.startswith(
JCQ_CONTROL
) & ~rows_baseline.str.endswith("Time")
limesurvey_control = (
participant_info_t[rows_control]
.reset_index()
.rename(columns={"index": "question", 0: "score_original"})
)
# Extract question IDs from names such as JobControle[3]
limesurvey_control["qid"] = (
limesurvey_control["question"].str.extract(r"\[(\d+)\]").astype(int)
)
limesurvey_control["score"] = limesurvey_control["score_original"]
# Identify rows that include questions to be reversed.
rows_control_reverse = limesurvey_control["qid"].isin(
dict_JCQ_demand_control_reverse[JCQ_CONTROL].keys()
)
# Reverse the score, so that the maximum value becomes the minimum etc.
limesurvey_control.loc[rows_control_reverse, "score"] = (
LIMESURVEY_JCQ_MAX
+ LIMESURVEY_JCQ_MIN
- limesurvey_control.loc[rows_control_reverse, "score_original"]
)
baseline_interim = pd.concat([baseline_interim, limesurvey_control], axis=0, ignore_index=True)
if "limesurvey_control" in requested_features:
baseline_features.loc[0, "limesurvey_control"] = limesurvey_control[
"score"
].sum()
if "limesurvey_demand_control_ratio" in requested_features:
if limesurvey_control["score"].sum():
limesurvey_demand_control_ratio = (
limesurvey_demand["score"].sum() / limesurvey_control["score"].sum()
)
else:
limesurvey_demand_control_ratio = 0
if (
JCQ_NORMS[participant_info.loc[0, "gender"]][0]
<= limesurvey_demand_control_ratio
< JCQ_NORMS[participant_info.loc[0, "gender"]][1]
):
limesurvey_quartile = 1
elif (
JCQ_NORMS[participant_info.loc[0, "gender"]][1]
<= limesurvey_demand_control_ratio
< JCQ_NORMS[participant_info.loc[0, "gender"]][2]
):
limesurvey_quartile = 2
elif (
JCQ_NORMS[participant_info.loc[0, "gender"]][2]
<= limesurvey_demand_control_ratio
< JCQ_NORMS[participant_info.loc[0, "gender"]][3]
):
limesurvey_quartile = 3
elif (
JCQ_NORMS[participant_info.loc[0, "gender"]][3]
<= limesurvey_demand_control_ratio
< JCQ_NORMS[participant_info.loc[0, "gender"]][4]
):
limesurvey_quartile = 4
else:
limesurvey_quartile = np.nan
baseline_features.loc[
0, "limesurvey_demand_control_ratio"
] = limesurvey_demand_control_ratio
baseline_features.loc[
0, "limesurvey_demand_control_ratio_quartile"
] = limesurvey_quartile
if not baseline_interim.empty:
baseline_interim.to_csv(snakemake.output["interim"], index=False, encoding="utf-8")
baseline_features.to_csv(snakemake.output["features"], index=False, encoding="utf-8")

View File

@ -1,6 +1,6 @@
source("renv/activate.R")
#library(RMariaDB)
library(RMariaDB)
library(stringr)
library(purrr)
library(readr)
@ -58,7 +58,7 @@ participants %>%
lines <- append(lines, empty_fitbit)
if(add_empatica_section == TRUE && !is.na(row[empatica_device_id_column])){
lines <- append(lines, c("EMPATICA:", paste0(" DEVICE_IDS: [",row$label,"]"),
lines <- append(lines, c("EMPATICA:", paste0(" DEVICE_IDS: [",row[empatica_device_id_column],"]"),
paste(" LABEL:",row$label), paste(" START_DATE:", start_date), paste(" END_DATE:", end_date)))
} else
lines <- append(lines, empty_empatica)

View File

@ -5,16 +5,13 @@ options(scipen=999)
assign_rows_to_segments <- function(data, segments){
# This function is used by all segment types, we use data.tables because they are fast
data <- data.table::as.data.table(data)
data[, assigned_segments := ""]
for(i in seq_len(nrow(segments))) {
segment <- segments[i,]
data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp,
assigned_segments := stringi::stri_c(assigned_segments, segment$segment_id, sep = "|")]
}
data[,assigned_segments:=substring(assigned_segments, 2)]
data
}

View File

@ -1,14 +0,0 @@
import pandas as pd
import yaml
filename = snakemake.input["data"]
baseline = pd.read_csv(filename)
with open(snakemake.input["participant_file"], "r") as file:
participant = yaml.safe_load(file)
username = participant["PHONE"]["LABEL"]
baseline[baseline["username"] == username].to_csv(snakemake.output[0],
index=False,
encoding="utf-8",)

View File

@ -1,30 +0,0 @@
import pandas as pd
VARIABLES_TO_TRANSLATE = {
"Gebruikersnaam": "username",
"Geslacht": "gender",
"Geboortedatum": "date_of_birth",
}
filenames = snakemake.input["data"]
baseline_dfs = []
for fn in filenames:
baseline_dfs.append(pd.read_csv(fn,
parse_dates=["Geboortedatum"],
infer_datetime_format=True,
cache_dates=True,
))
baseline = (
pd.concat(baseline_dfs, join="inner")
.reset_index()
.drop(columns="index")
)
baseline.rename(columns=VARIABLES_TO_TRANSLATE, copy=False, inplace=True)
baseline.to_csv(snakemake.output[0],
index=False,
encoding="utf-8",)

View File

@ -1,85 +0,0 @@
# if you need a new package, you should add it with renv::install(package) so your renv venv is updated
library(RMariaDB)
library(yaml)
#' @description
#' Auxiliary function to parse the connection credentials from a specifc group in ./credentials.yaml
#' You can reause most of this function if you are connection to a DB or Web API.
#' It's OK to delete this function if you don't need credentials, e.g., you are pulling data from a CSV for example.
#' @param group the yaml key containing the credentials to connect to a database
#' @preturn dbEngine a database engine (connection) ready to perform queries
get_db_engine <- function(group){
# The working dir is aways RAPIDS root folder, so your credentials file is always /credentials.yaml
credentials <- read_yaml("./credentials.yaml")
if(!group %in% names(credentials))
stop(paste("The credentials group",group, "does not exist in ./credentials.yaml. The only groups that exist in that file are:", paste(names(credentials), collapse = ","), ". Did you forget to set the group in [PHONE_DATA_STREAMS][aware_mysql][DATABASE_GROUP] in config.yaml?"))
dbEngine <- dbConnect(MariaDB(), db = credentials[[group]][["database"]],
username = credentials[[group]][["user"]],
password = credentials[[group]][["password"]],
host = credentials[[group]][["host"]],
port = credentials[[group]][["port"]])
return(dbEngine)
}
# This file gets executed for each PHONE_SENSOR of each participant
# If you are connecting to a database the env file containing its credentials is available at "./.env"
# If you are reading a CSV file instead of a DB table, the @param sensor_container wil contain the file path as set in config.yaml
# You are not bound to databases or files, you can query a web API or whatever data source you need.
#' @description
#' RAPIDS allows users to use the keyword "infer" (previously "multiple") to automatically infer the mobile Operative System a device was running.
#' If you have a way to infer the OS of a device ID, implement this function. For example, for AWARE data we use the "aware_device" table.
#'
#' If you don't have a way to infer the OS, call stop("Error Message") so other users know they can't use "infer" or the inference failed,
#' and they have to assign the OS manually in the participant file
#'
#' @param stream_parameters The PHONE_STREAM_PARAMETERS key in config.yaml. If you need specific parameters add them there.
#' @param device A device ID string
#' @return The OS the device ran, "android" or "ios"
infer_device_os <- function(stream_parameters, device){
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
query <- paste0("SELECT device_id,brand FROM aware_device WHERE device_id = '", device, "'")
message(paste0("Executing the following query to infer phone OS: ", query))
os <- dbGetQuery(dbEngine, query)
dbDisconnect(dbEngine)
if(nrow(os) > 0)
return(os %>% mutate(os = ifelse(brand == "iPhone", "ios", "android")) %>% pull(os))
else
stop(paste("We cannot infer the OS of the following device id because it does not exist in the aware_device table:", device))
return(os)
}
#' @description
#' Gets the sensor data for a specific device id from a database table, file or whatever source you want to query
#'
#' @param stream_parameters The PHONE_STREAM_PARAMETERS key in config.yaml. If you need specific parameters add them there.
#' @param device A device ID string
#' @param sensor_container database table or file containing the sensor data for all participants. This is the PHONE_SENSOR[CONTAINER] key in config.yaml
#' @param columns the columns needed from this sensor (we recommend to only return these columns instead of every column in sensor_container)
#' @return A dataframe with the sensor data for device
pull_data <- function(stream_parameters, device, sensor, sensor_container, columns){
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
select_items <- c()
for (column in columns) {
select_items <- append(select_items, paste0("data->>'$.", column, "' ", column))
}
query <- paste0("SELECT ", paste(select_items, collapse = ",")," FROM ", sensor_container, " WHERE ", columns$DEVICE_ID ," = '", device,"'")
# Letting the user know what we are doing
message(paste0("Executing the following query to download data: ", query))
sensor_data <- dbGetQuery(dbEngine, query)
dbDisconnect(dbEngine)
if(nrow(sensor_data) == 0)
warning(paste("The device '", device,"' did not have data in ", sensor_container))
return(sensor_data)
}

View File

@ -1,337 +0,0 @@
PHONE_ACCELEROMETER:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_VALUES_0: double_values_0
DOUBLE_VALUES_1: double_values_1
DOUBLE_VALUES_2: double_values_2
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_VALUES_0: double_values_0
DOUBLE_VALUES_1: double_values_1
DOUBLE_VALUES_2: double_values_2
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_ACTIVITY_RECOGNITION:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
ACTIVITY_NAME: activity_name
ACTIVITY_TYPE: activity_type
CONFIDENCE: confidence
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
ACTIVITY_NAME: FLAG_TO_MUTATE
ACTIVITY_TYPE: FLAG_TO_MUTATE
CONFIDENCE: FLAG_TO_MUTATE
MUTATION:
COLUMN_MAPPINGS:
ACTIVITIES: activities
CONFIDENCE: confidence
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/activity_recogniton_ios_unification.R"
PHONE_APPLICATIONS_CRASHES:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
APPLICATION_NAME: application_name
APPLICATION_VERSION: application_version
ERROR_SHORT: error_short
ERROR_LONG: error_long
ERROR_CONDITION: error_condition
IS_SYSTEM_APP: is_system_app
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_APPLICATIONS_FOREGROUND:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
APPLICATION_NAME: application_name
IS_SYSTEM_APP: is_system_app
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_APPLICATIONS_NOTIFICATIONS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
APPLICATION_NAME: application_name
TEXT: text
SOUND: sound
VIBRATE: vibrate
DEFAULTS: defaults
FLAGS: flags
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_BATTERY:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BATTERY_STATUS: battery_status
BATTERY_LEVEL: battery_level
BATTERY_SCALE: battery_scale
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BATTERY_STATUS: FLAG_TO_MUTATE
BATTERY_LEVEL: battery_level
BATTERY_SCALE: battery_scale
MUTATION:
COLUMN_MAPPINGS:
BATTERY_STATUS: battery_status
SCRIPTS:
- "src/data/streams/mutations/phone/aware/battery_ios_unification.R"
PHONE_BLUETOOTH:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BT_ADDRESS: bt_address
BT_NAME: bt_name
BT_RSSI: bt_rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BT_ADDRESS: bt_address
BT_NAME: bt_name
BT_RSSI: bt_rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_CALLS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
CALL_TYPE: call_type
CALL_DURATION: call_duration
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
CALL_TYPE: FLAG_TO_MUTATE
CALL_DURATION: call_duration
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
CALL_TYPE: call_type
SCRIPTS:
- "src/data/streams/mutations/phone/aware/calls_ios_unification.R"
PHONE_CONVERSATION:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_ENERGY: double_energy
INFERENCE: inference
DOUBLE_CONVO_START: double_convo_start
DOUBLE_CONVO_END: double_convo_end
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_ENERGY: double_energy
INFERENCE: inference
DOUBLE_CONVO_START: double_convo_start
DOUBLE_CONVO_END: double_convo_end
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/conversation_ios_timestamp.R"
PHONE_KEYBOARD:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
BEFORE_TEXT: before_text
CURRENT_TEXT: current_text
IS_PASSWORD: is_password
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LIGHT:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LIGHT_LUX: double_light_lux
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LOCATIONS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LATITUDE: double_latitude
DOUBLE_LONGITUDE: double_longitude
DOUBLE_BEARING: double_bearing
DOUBLE_SPEED: double_speed
DOUBLE_ALTITUDE: double_altitude
PROVIDER: provider
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LATITUDE: double_latitude
DOUBLE_LONGITUDE: double_longitude
DOUBLE_BEARING: double_bearing
DOUBLE_SPEED: double_speed
DOUBLE_ALTITUDE: double_altitude
PROVIDER: provider
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LOG:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
LOG_MESSAGE: log_message
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
LOG_MESSAGE: log_message
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_MESSAGES:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MESSAGE_TYPE: message_type
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_SCREEN:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SCREEN_STATUS: screen_status
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SCREEN_STATUS: FLAG_TO_MUTATE
MUTATION:
COLUMN_MAPPINGS:
SCREEN_STATUS: screen_status
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/screen_ios_unification.R"
PHONE_WIFI_CONNECTED:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MAC_ADDRESS: mac_address
SSID: ssid
BSSID: bssid
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MAC_ADDRESS: mac_address
SSID: ssid
BSSID: bssid
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_WIFI_VISIBLE:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SSID: ssid
BSSID: bssid
SECURITY: security
FREQUENCY: frequency
RSSI: rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SSID: ssid
BSSID: bssid
SECURITY: security
FREQUENCY: frequency
RSSI: rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data

View File

@ -1,212 +0,0 @@
# if you need a new package, you should add it with renv::install(package) so your renv venv is updated
library(RPostgres)
# Needs libpq-dev for compiling from source.
# Error installing package 'RPostgres':
# =====================================
#
# * installing *source* package 'RPostgres' ...
# ** package 'RPostgres' successfully unpacked and MD5 sums checked
# ** using staged installation
# Using PKG_CFLAGS=
# Using PKG_LIBS=-lpq
# Using PKG_PLOGR=
# ------------------------- ANTICONF ERROR ---------------------------
# Configuration failed because libpq was not found. Try installing:
# * deb: libpq-dev (Debian, Ubuntu, etc)
# * rpm: postgresql-devel (Fedora, EPEL)
# * rpm: postgreql8-devel, psstgresql92-devel, postgresql93-devel, or postgresql94-devel (Amazon Linux)
# * csw: postgresql_dev (Solaris)
# * brew: libpq (OSX)
# If libpq is already installed, check that either:
# (i) 'pkg-config' is in your PATH AND PKG_CONFIG_PATH contains
# a libpq.pc file; or
# (ii) 'pg_config' is in your PATH.
# If neither can detect , you can set INCLUDE_DIR
# and LIB_DIR manually via:
# R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'
# --------------------------[ ERROR MESSAGE ]----------------------------
# <stdin>:1:10: fatal error: libpq-fe.h: No such file or directory
# compilation terminated.
library(dbplyr)
library(yaml)
#' @description
#' Auxiliary function to parse the connection credentials from a specifc group in ./credentials.yaml
#' You can reause most of this function if you are connection to a DB or Web API.
#' It's OK to delete this function if you don't need credentials, e.g., you are pulling data from a CSV for example.
#' @param group the yaml key containing the credentials to connect to a database
#' @preturn dbEngine a database engine (connection) ready to perform queries
get_db_engine <- function(group){
# The working dir is aways RAPIDS root folder, so your credentials file is always /credentials.yaml
credentials <- read_yaml("./credentials.yaml")
if(!group %in% names(credentials))
stop(paste("The credentials group",group, "does not exist in ./credentials.yaml. The only groups that exist in that file are:", paste(names(credentials), collapse = ","), ". Did you forget to set the group in [PHONE_DATA_STREAMS][aware_mysql][DATABASE_GROUP] in config.yaml?"))
dbEngine <- dbConnect(Postgres(), db = credentials[[group]][["database"]],
user = credentials[[group]][["user"]],
password = credentials[[group]][["password"]],
host = credentials[[group]][["host"]],
port = credentials[[group]][["port"]])
return(dbEngine)
}
# This file gets executed for each PHONE_SENSOR of each participant
# If you are connecting to a database the env file containing its credentials is available at "./.env"
# If you are reading a CSV file instead of a DB table, the @param sensor_container wil contain the file path as set in config.yaml
# You are not bound to databases or files, you can query a web API or whatever data source you need.
#' @description
#' RAPIDS allows users to use the keyword "infer" (previously "multiple") to automatically infer the mobile Operative System a device was running.
#' If you have a way to infer the OS of a device ID, implement this function. For example, for AWARE data we use the "aware_device" table.
#'
#' If you don't have a way to infer the OS, call stop("Error Message") so other users know they can't use "infer" or the inference failed,
#' and they have to assign the OS manually in the participant file
#'
#' @param stream_parameters The PHONE_STREAM_PARAMETERS key in config.yaml. If you need specific parameters add them there.
#' @param device A device ID string
#' @return The OS the device ran, "android" or "ios"
infer_device_os <- function(stream_parameters, device){
#dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
#query <- paste0("SELECT device_id,brand FROM aware_device WHERE device_id = '", device, "'")
#message(paste0("Executing the following query to infer phone OS: ", query))
#os <- dbGetQuery(dbEngine, query)
#dbDisconnect(dbEngine)
#if(nrow(os) > 0)
# return(os %>% mutate(os = ifelse(brand == "iPhone", "ios", "android")) %>% pull(os))
#else
stop(paste("We cannot infer the OS of the following device id because the aware_device table does not exist."))
#return(os)
}
#' @description
#' Gets the sensor data for a specific device id from a database table, file or whatever source you want to query
#'
#' @param stream_parameters The PHONE_STREAM_PARAMETERS key in config.yaml. If you need specific parameters add them there.
#' @param device A device ID string
#' @param sensor_container database table or file containing the sensor data for all participants. This is the PHONE_SENSOR[CONTAINER] key in config.yaml
#' @param columns the columns needed from this sensor (we recommend to only return these columns instead of every column in sensor_container)
#' @return A dataframe with the sensor data for device
pull_data <- function(stream_parameters, device, sensor, sensor_container, columns){
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
query <- paste0("SELECT ", paste(columns, collapse = ",")," FROM ", sensor_container, " WHERE ", columns$DEVICE_ID ," = '", device,"'")
# Letting the user know what we are doing
message(paste0("Executing the following query to download data: ", query))
sensor_data <- dbGetQuery(dbEngine, query)
dbDisconnect(dbEngine)
if(nrow(sensor_data) == 0)
warning(paste("The device '", device,"' did not have data in ", sensor_container))
return(sensor_data)
}
#' @description
#' Gets participants' IDs for specified usernames.
#'
#' @param stream_parameters The PHONE_DATA_STREAMS key in config.yaml. If you need specific parameters add them there.
#' @param usernames A vector of usernames
#' @param participants_container The name of the database table containing participants data, such as their username.
#' @return A dataframe with participant IDs matching usernames
pull_participants_ids <- function(stream_parameters, usernames, participants_container) {
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
query_participant_id <- tbl(dbEngine, participants_container) %>%
filter(username %in% usernames) %>%
select(username, id)
message(paste0("Executing the following query to get participants' IDs: \n", sql_render(query_participant_id)))
participant_data <- query_participant_id %>% collect()
dbDisconnect(dbEngine)
if(nrow(participant_data) == 0)
warning(paste("We could not find requested usernames (", usernames, ") in ", participants_container))
return(participant_data)
}
#' @description
#' Gets participants' IDs for specified participant IDs
#'
#' @param stream_parameters The PHONE_DATA_STREAMS key in config.yaml. If you need specific parameters add them there.
#' @param participants_ids A vector of numeric participant IDs
#' @param device_id_container The name of the database table which will be used to determine distinct device ID. Ideally, a table that reliably contains data, but not too much.
#' @return A dataframe with a row matching each distinct device ID with a participant ID
pull_participants_device_ids <- function(stream_parameters, participants_ids, device_id_container) {
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
query_device_id <- tbl(dbEngine, device_id_container) %>%
filter(participant_id %in% !!participants_ids) %>%
group_by(participant_id) %>%
distinct(device_id, .keep_all = FALSE)
message(
paste0(
"Executing the following query to get the distinct device IDs: \n",
sql_render(query_device_id),
"\n NOTE: This might take a long time."
)
)
device_ids <- query_device_id %>% collect()
dbDisconnect(dbEngine)
if(nrow(device_ids) == 0)
warning(paste("We could not find device IDs for requested participant IDs (", participants_ids, ") in ", device_id_container))
return(device_ids)
}
#' @description
#' Gets start and end datetimes for specified participant IDs.
#'
#' @param stream_parameters The PHONE_DATA_STREAMS key in config.yaml. If you need specific parameters add them there.
#' @param participants_ids A vector of numeric participant IDs
#' @param start_end_date_container The name of the database table which will be used to determine when a participant started and ended their participation. Briefing and debriefing EMAs can be meaningfully used here.
#' @return A dataframe relating participant IDs with their start and end datetimes.
pull_participants_start_end_dates <- function(stream_parameters, participants_ids, start_end_date_container) {
dbEngine <- get_db_engine(stream_parameters$DATABASE_GROUP)
query_timestamps <- tbl(dbEngine, start_end_date_container) %>%
filter(
participant_id %in% !!participants_ids,
double_esm_user_answer_timestamp > 0
) %>%
group_by(participant_id) %>%
summarise(
timestamp_min = min(double_esm_user_answer_timestamp, na.rm = TRUE),
timestamp_max = max(double_esm_user_answer_timestamp, na.rm = TRUE)
) %>%
select(participant_id, timestamp_min, timestamp_max)
message(paste0("Executing the following query to get the starting and ending datetimes: \n", sql_render(query_timestamps)))
start_end_timestamps <- query_timestamps %>% collect()
if(nrow(start_end_timestamps) == 0)
warning(paste("We could not find datetimes for requested participant IDs (", participants_ids, ") in ", start_end_date_container))
start_end_times <- start_end_timestamps %>%
mutate(
datetime_start = as_datetime(timestamp_min/1000, tz = "UTC"),
datetime_end = as_datetime(timestamp_max/1000, tz = "UTC")
) %>%
select(-c(timestamp_min, timestamp_max))
dbDisconnect(dbEngine)
return(start_end_times)
}

View File

@ -1,372 +0,0 @@
PHONE_ACCELEROMETER:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_VALUES_0: double_values_0
DOUBLE_VALUES_1: double_values_1
DOUBLE_VALUES_2: double_values_2
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_VALUES_0: double_values_0
DOUBLE_VALUES_1: double_values_1
DOUBLE_VALUES_2: double_values_2
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_ACTIVITY_RECOGNITION:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
ACTIVITY_NAME: activity_name
ACTIVITY_TYPE: activity_type
CONFIDENCE: confidence
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
ACTIVITY_NAME: FLAG_TO_MUTATE
ACTIVITY_TYPE: FLAG_TO_MUTATE
CONFIDENCE: FLAG_TO_MUTATE
MUTATION:
COLUMN_MAPPINGS:
ACTIVITIES: activities
CONFIDENCE: confidence
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/activity_recogniton_ios_unification.R"
PHONE_APPLICATIONS_CRASHES:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
APPLICATION_NAME: application_name
APPLICATION_VERSION: application_version
ERROR_SHORT: error_short
ERROR_LONG: error_long
ERROR_CONDITION: error_condition
IS_SYSTEM_APP: is_system_app
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_APPLICATIONS_FOREGROUND:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_hash
APPLICATION_NAME: FLAG_TO_MUTATE
IS_SYSTEM_APP: is_system_app
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS:
- src/data/streams/mutations/phone/straw/app_add_name.R
PHONE_APPLICATIONS_NOTIFICATIONS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_hash
APPLICATION_NAME: FLAG_TO_MUTATE
SOUND: sound
VIBRATE: vibrate
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS:
- src/data/streams/mutations/phone/straw/app_add_name.R
PHONE_BATTERY:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BATTERY_STATUS: battery_status
BATTERY_LEVEL: battery_level
BATTERY_SCALE: battery_scale
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BATTERY_STATUS: FLAG_TO_MUTATE
BATTERY_LEVEL: battery_level
BATTERY_SCALE: battery_scale
MUTATION:
COLUMN_MAPPINGS:
BATTERY_STATUS: battery_status
SCRIPTS:
- "src/data/streams/mutations/phone/aware/battery_ios_unification.R"
PHONE_BLUETOOTH:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BT_ADDRESS: bt_address
BT_NAME: bt_name
BT_RSSI: bt_rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
BT_ADDRESS: bt_address
BT_NAME: bt_name
BT_RSSI: bt_rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_CALLS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
CALL_TYPE: call_type
CALL_DURATION: call_duration
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
CALL_TYPE: FLAG_TO_MUTATE
CALL_DURATION: call_duration
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
CALL_TYPE: call_type
SCRIPTS:
- "src/data/streams/mutations/phone/aware/calls_ios_unification.R"
PHONE_CONVERSATION:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_ENERGY: double_energy
INFERENCE: inference
DOUBLE_CONVO_START: double_convo_start
DOUBLE_CONVO_END: double_convo_end
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_ENERGY: double_energy
INFERENCE: inference
DOUBLE_CONVO_START: double_convo_start
DOUBLE_CONVO_END: double_convo_end
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/conversation_ios_timestamp.R"
PHONE_ESM:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: double_esm_user_answer_timestamp
DEVICE_ID: device_id
ESM_STATUS: esm_status
ESM_USER_ANSWER: esm_user_answer
ESM_JSON: esm_json
ESM_TRIGGER: esm_trigger
ESM_SESSION: esm_session
ESM_NOTIFICATION_ID: esm_notification_id
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS:
PHONE_KEYBOARD:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
PACKAGE_NAME: package_name
BEFORE_TEXT: before_text
CURRENT_TEXT: current_text
IS_PASSWORD: is_password
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LIGHT:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LIGHT_LUX: double_light_lux
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LOCATIONS:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LATITUDE: double_latitude
DOUBLE_LONGITUDE: double_longitude
DOUBLE_BEARING: double_bearing
DOUBLE_SPEED: double_speed
DOUBLE_ALTITUDE: double_altitude
PROVIDER: provider
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
DOUBLE_LATITUDE: double_latitude
DOUBLE_LONGITUDE: double_longitude
DOUBLE_BEARING: double_bearing
DOUBLE_SPEED: double_speed
DOUBLE_ALTITUDE: double_altitude
PROVIDER: provider
ACCURACY: accuracy
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_LOG:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
LOG_MESSAGE: log_message
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
LOG_MESSAGE: log_message
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_MESSAGES:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MESSAGE_TYPE: message_type
TRACE: trace
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_SCREEN:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SCREEN_STATUS: screen_status
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SCREEN_STATUS: FLAG_TO_MUTATE
MUTATION:
COLUMN_MAPPINGS:
SCREEN_STATUS: screen_status
SCRIPTS: # List any python or r scripts that mutate your raw data
- "src/data/streams/mutations/phone/aware/screen_ios_unification.R"
PHONE_WIFI_CONNECTED:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MAC_ADDRESS: mac_address
SSID: ssid
BSSID: bssid
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
MAC_ADDRESS: mac_address
SSID: ssid
BSSID: bssid
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_WIFI_VISIBLE:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SSID: ssid
BSSID: bssid
SECURITY: security
FREQUENCY: frequency
RSSI: rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SSID: ssid
BSSID: bssid
SECURITY: security
FREQUENCY: frequency
RSSI: rssi
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
PHONE_SPEECH:
ANDROID:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SPEECH_PROPORTION: speech_proportion
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data
IOS:
RAPIDS_COLUMN_MAPPINGS:
TIMESTAMP: timestamp
DEVICE_ID: device_id
SPEECH_PROPORTION: speech_proportion
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data

View File

@ -2,16 +2,11 @@ from zipfile import ZipFile
import warnings
from pathlib import Path
import pandas as pd
import numpy as np
from pandas.core import indexing
import yaml
import csv
from collections import OrderedDict
from io import BytesIO, StringIO
import sys, os
from cr_features.hrv import get_HRV_features, get_patched_ibi_with_bvp
from cr_features.helper_functions import empatica1d_to_array, empatica2d_to_array
def processAcceleration(x, y, z):
x = float(x)
@ -57,8 +52,6 @@ def extract_empatica_data(data, sensor):
df = pd.DataFrame.from_dict(ddict, orient='index', columns=[column])
df[column] = df[column].astype(float)
df.index.name = 'timestamp'
if df.empty:
return df
elif sensor == 'EMPATICA_ACCELEROMETER':
ddict = readFile(sensor_data_file, sensor)
@ -67,22 +60,15 @@ def extract_empatica_data(data, sensor):
df['y'] = df['y'].astype(float)
df['z'] = df['z'].astype(float)
df.index.name = 'timestamp'
if df.empty:
return df
elif sensor == 'EMPATICA_INTER_BEAT_INTERVAL':
df = pd.read_csv(sensor_data_file, names=['timings', column], header=None)
df['timestamp'] = df['timings']
if df.empty:
df = df.set_index('timestamp')
return df
df = pd.read_csv(sensor_data_file, names=['timestamp', column], header=None)
timestampstart = float(df['timestamp'][0])
df['timestamp'] = (df['timestamp'][1:len(df)]).astype(float) + timestampstart
df['timestamp'] = (df['timestamp'][1:len(df)]).astype(float) + timestampstart
df = df.drop([0])
df[column] = df[column].astype(float)
df = df.set_index('timestamp')
else:
raise ValueError(
"sensor has an invalid name: {}".format(sensor))
@ -98,10 +84,6 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
participant_data = pd.DataFrame(columns=columns_to_download.values())
participant_data.set_index('timestamp', inplace=True)
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
cr_ibi_provider = config['EMPATICA_INTER_BEAT_INTERVAL']['PROVIDERS']['CR']
available_zipfiles = list((Path(data_configuration["FOLDER"]) / Path(device)).rglob("*.zip"))
if len(available_zipfiles) == 0:
warnings.warn("There were no zip files in: {}. If you were expecting data for this participant the [EMPATICA][DEVICE_IDS] key in their participant file is missing the pid".format((Path(data_configuration["FOLDER"]) / Path(device))))
@ -112,13 +94,7 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
listOfFileNames = zipFile.namelist()
for fileName in listOfFileNames:
if fileName == sensor_csv:
if sensor == "EMPATICA_INTER_BEAT_INTERVAL" and cr_ibi_provider.get('PATCH_WITH_BVP', False):
participant_data = \
pd.concat([participant_data, patch_ibi_with_bvp(zipFile.read('IBI.csv'), zipFile.read('BVP.csv'))], axis=0)
#print("patch with ibi")
else:
participant_data = pd.concat([participant_data, extract_empatica_data(zipFile.read(fileName), sensor)], axis=0)
#print("no patching")
participant_data = pd.concat([participant_data, extract_empatica_data(zipFile.read(fileName), sensor)], axis=0)
warning = False
if warning:
warnings.warn("We could not find a zipped file for {} in {} (we tried to find {})".format(sensor, zipFile, sensor_csv))
@ -129,54 +105,4 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
participant_data["device_id"] = device
return(participant_data)
def patch_ibi_with_bvp(ibi_data, bvp_data):
ibi_data_file = BytesIO(ibi_data).getvalue().decode('utf-8')
ibi_data_file = StringIO(ibi_data_file)
# Begin with the cr-features part
try:
ibi_data, ibi_start_timestamp = empatica2d_to_array(ibi_data_file)
except (IndexError, KeyError) as e:
# Checks whether IBI.csv is empty
# It may raise a KeyError if df is empty here: startTimeStamp = df.time[0]
df_test = pd.read_csv(ibi_data_file, names=['timings', 'inter_beat_interval'], header=None)
if df_test.empty:
df_test['timestamp'] = df_test['timings']
df_test = df_test.set_index('timestamp')
return df_test
else:
raise IndexError("Something went wrong with indices. Error that was previously caught:\n", repr(e))
bvp_data_file = BytesIO(bvp_data).getvalue().decode('utf-8')
bvp_data_file = StringIO(bvp_data_file)
bvp_data, bvp_start_timestamp, sample_rate = empatica1d_to_array(bvp_data_file)
hrv_time_and_freq_features, sample, bvp_rr, bvp_timings, peak_indx = \
get_HRV_features(bvp_data, ma=False,
detrend=False, m_deternd=False, low_pass=False, winsorize=True,
winsorize_value=25, hampel_fiter=False, median_filter=False,
mod_z_score_filter=True, sampling=64, feature_names=['meanHr'])
ibi_timings, ibi_rr = get_patched_ibi_with_bvp(ibi_data[0], ibi_data[1], bvp_timings, bvp_rr)
df = \
pd.DataFrame(np.array([ibi_timings, ibi_rr]).transpose(), columns=['timestamp', 'inter_beat_interval'])
df.loc[-1] = [ibi_start_timestamp, 'IBI'] # adding a row
df.index = df.index + 1 # shifting index
df = df.sort_index() # sorting by index
# Repeated as in extract_empatica_data for IBI
df['timings'] = df['timestamp']
timestampstart = float(df['timestamp'][0])
df['timestamp'] = (df['timestamp'][1:len(df)]).astype(float) + timestampstart
df = df.drop([0])
df['inter_beat_interval'] = df['inter_beat_interval'].astype(float)
df = df.set_index('timestamp')
# format timestamps
df.index *= 1000
df.index = df.index.astype(int)
return(df)
# print(pull_data({'FOLDER': 'data/external/empatica'}, "e01", "EMPATICA_accelerometer", {'TIMESTAMP': 'timestamp', 'DEVICE_ID': 'device_id', 'DOUBLE_VALUES_0': 'x', 'DOUBLE_VALUES_1': 'y', 'DOUBLE_VALUES_2': 'z'}))

View File

@ -50,7 +50,6 @@ EMPATICA_INTER_BEAT_INTERVAL:
TIMESTAMP: timestamp
DEVICE_ID: device_id
INTER_BEAT_INTERVAL: inter_beat_interval
TIMINGS: timings
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data

View File

@ -39,7 +39,7 @@ unify_ios_calls <- function(ios_calls){
assigned_segments = first(assigned_segments))
}
else {
ios_calls <- ios_calls %>% summarise(call_type_sequence = paste(call_type, collapse = ","), call_duration = sum(as.numeric(call_duration)), timestamp = first(timestamp), device_id = first(device_id))
ios_calls <- ios_calls %>% summarise(call_type_sequence = paste(call_type, collapse = ","), call_duration = sum(call_duration), timestamp = first(timestamp), device_id = first(device_id))
}
ios_calls <- ios_calls %>% mutate(call_type = case_when(
call_type_sequence == "1,2,4" | call_type_sequence == "2,1,4" ~ 1, # incoming

View File

@ -1,8 +0,0 @@
source("renv/activate.R") # needed to use RAPIDS renv environment
library(dplyr)
main <- function(data, stream_parameters){
data <- data %>%
mutate(application_name = "hashed")
return(data)
}

View File

@ -1,5 +0,0 @@
import pandas as pd
def main(data, stream_parameters):
data["application_name"] = "hashed"
return(data)

View File

@ -35,8 +35,11 @@ PHONE_APPLICATIONS_NOTIFICATIONS:
- DEVICE_ID
- PACKAGE_NAME
- APPLICATION_NAME
- TEXT
- SOUND
- VIBRATE
- DEFAULTS
- FLAGS
PHONE_BATTERY:
- TIMESTAMP
@ -67,16 +70,6 @@ PHONE_CONVERSATION:
- DOUBLE_CONVO_START
- DOUBLE_CONVO_END
PHONE_ESM:
- TIMESTAMP
- DEVICE_ID
- ESM_STATUS
- ESM_USER_ANSWER
- ESM_JSON
- ESM_TRIGGER
- ESM_SESSION
- ESM_NOTIFICATION_ID
PHONE_KEYBOARD:
- TIMESTAMP
- DEVICE_ID
@ -118,11 +111,6 @@ PHONE_SCREEN:
- DEVICE_ID
- SCREEN_STATUS
PHONE_SPEECH:
- TIMESTAMP
- DEVICE_ID
- SPEECH_PROPORTION
PHONE_WIFI_CONNECTED:
- TIMESTAMP
- DEVICE_ID
@ -232,7 +220,6 @@ EMPATICA_INTER_BEAT_INTERVAL:
- TIMESTAMP
- DEVICE_ID
- INTER_BEAT_INTERVAL
- TIMINGS
EMPATICA_TAGS:
- TIMESTAMP

View File

@ -1,62 +0,0 @@
source("renv/activate.R")
source("src/data/streams/aware_postgresql/container.R")
library(RPostgres)
library(magrittr)
library(tidyverse)
library(lubridate)
prepare_participants_file <- function() {
username_list_csv_location <- snakemake@input[["username_list"]]
data_configuration <- snakemake@params[["data_configuration"]]
participants_container <- snakemake@params[["participants_table"]]
device_id_container <- snakemake@params[["device_id_table"]]
start_end_date_container <- snakemake@params[["start_end_date_table"]]
output_data_file <- snakemake@output[["participants_file"]]
platform <- "android"
pid_format <- "p%03d"
datetime_format <- "%Y-%m-%d %H:%M:%S"
participant_data <- read_csv(username_list_csv_location, col_types = "cc", progress = FALSE)
usernames <- participant_data$label
participant_ids <- pull_participants_ids(data_configuration, usernames, participants_container)
participant_data %<>%
left_join(participant_ids, by = c("label" = "username")) %>%
rename(participant_id = id)
device_ids <- pull_participants_device_ids(data_configuration, participant_data$participant_id, device_id_container)
device_ids %<>%
filter(device_id != "") %>%
group_by(participant_id) %>%
summarise(device_ids = list(unique(device_id)))
participant_data %<>%
left_join(device_ids, by = "participant_id")
start_end_datetimes <- pull_participants_start_end_dates(data_configuration, participant_data$participant_id, start_end_date_container)
participant_data %<>%
left_join(start_end_datetimes, by = "participant_id")
participant_data %<>%
mutate(
pid = sprintf(pid_format, participant_id),
start_date = strftime(datetime_start, format=datetime_format, tz = "UTC", usetz = FALSE), #TODO Check what timezone is expected
end_date = strftime(datetime_end, format=datetime_format, tz = "UTC", usetz = FALSE),
device_id = map_chr(device_ids, str_c, collapse = ";"),
number_of_devices = map_int(device_ids, length),
fitbit_id = ""
) %>%
rowwise() %>%
mutate(platform = str_c(replicate(number_of_devices, platform), collapse = ";")) %>%
ungroup() %>%
arrange(pid) %>%
select(pid, label, start_date, end_date, empatica_id, device_id, platform, fitbit_id)
write_csv(participant_data, output_data_file)
}
prepare_participants_file()

View File

@ -1,89 +0,0 @@
source("renv/activate.R")
library(tidyr)
library("dplyr", warn.conflicts = F)
library(tidyverse)
library(caret)
library(corrr)
rapids_cleaning <- function(sensor_data_files, provider){
clean_features <- read.csv(sensor_data_files[["sensor_data"]], stringsAsFactors = FALSE)
impute_selected_event_features <- provider[["IMPUTE_SELECTED_EVENT_FEATURES"]]
cols_nan_threshold <- as.numeric(provider[["COLS_NAN_THRESHOLD"]])
drop_zero_variance_columns <- as.logical(provider[["COLS_VAR_THRESHOLD"]])
rows_nan_threshold <- as.numeric(provider[["ROWS_NAN_THRESHOLD"]])
data_yield_unit <- tolower(str_split_fixed(provider[["DATA_YIELD_FEATURE"]], "_", 4)[[4]])
data_yield_column <- paste0("phone_data_yield_rapids_ratiovalidyielded", data_yield_unit)
data_yield_ratio_threshold <- as.numeric(provider[["DATA_YIELD_RATIO_THRESHOLD"]])
drop_highly_correlated_features <- provider[["DROP_HIGHLY_CORRELATED_FEATURES"]]
# Impute selected event features
if(as.logical(impute_selected_event_features$COMPUTE)){
if(!"phone_data_yield_rapids_ratiovalidyieldedminutes" %in% colnames(clean_features)){
stop("Error: RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
}
column_names <- colnames(clean_features)
selected_apps_features <- column_names[grepl("^phone_applications_foreground_rapids_(countevent|countepisode|minduration|maxduration|meanduration|sumduration)", column_names)]
selected_battery_features <- column_names[grepl("^phone_battery_rapids_", column_names)]
selected_calls_features <- column_names[grepl("^phone_calls_rapids_.*_(count|distinctcontacts|sumduration|minduration|maxduration|meanduration|modeduration)", column_names)]
selected_keyboard_features <- column_names[grepl("^phone_keyboard_rapids_(sessioncount|averagesessionlength|changeintextlengthlessthanminusone|changeintextlengthequaltominusone|changeintextlengthequaltoone|changeintextlengthmorethanone|maxtextlength|totalkeyboardtouches)", column_names)]
selected_messages_features <- column_names[grepl("^phone_messages_rapids_.*_(count|distinctcontacts)", column_names)]
selected_screen_features <- column_names[grepl("^phone_screen_rapids_(sumduration|maxduration|minduration|avgduration|countepisode)", column_names)]
selected_wifi_features <- column_names[grepl("^phone_wifi_(connected|visible)_rapids_", column_names)]
selected_columns <- c(selected_apps_features, selected_battery_features, selected_calls_features, selected_keyboard_features, selected_messages_features, selected_screen_features, selected_wifi_features)
clean_features[selected_columns][is.na(clean_features[selected_columns]) & (clean_features$phone_data_yield_rapids_ratiovalidyieldedminutes > impute_selected_event_features$MIN_DATA_YIELDED_MINUTES_TO_IMPUTE)] <- 0
}
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
if(!data_yield_column %in% colnames(clean_features)){
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
}
if (data_yield_ratio_threshold > 0) {
clean_features <- clean_features %>%
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
}
# Drop columns with a percentage of NA values above cols_nan_threshold
if(nrow(clean_features))
clean_features <- clean_features %>% select(where(~ sum(is.na(.)) / length(.) <= cols_nan_threshold ), starts_with("phone_esm"))
# Drop columns with zero variance
if(drop_zero_variance_columns)
clean_features <- clean_features %>% select_if(grepl("pid|local_segment|local_segment_label|local_segment_start_datetime|local_segment_end_datetime|phone_esm",names(.)) | sapply(., n_distinct, na.rm = T) > 1)
# Drop highly correlated features
if(as.logical(drop_highly_correlated_features$COMPUTE)){
min_overlap_for_corr_threshold <- as.numeric(drop_highly_correlated_features$MIN_OVERLAP_FOR_CORR_THRESHOLD)
corr_threshold <- as.numeric(drop_highly_correlated_features$CORR_THRESHOLD)
features_for_corr <- clean_features %>%
select_if(is.numeric) %>%
select_if(sapply(., n_distinct, na.rm = T) > 1)
valid_pairs <- crossprod(!is.na(features_for_corr)) >= min_overlap_for_corr_threshold * nrow(features_for_corr)
if((nrow(features_for_corr) != 0) & (ncol(features_for_corr) != 0)){
highly_correlated_features <- features_for_corr %>%
correlate(use = "pairwise.complete.obs", method = "spearman") %>%
column_to_rownames(., var = "term") %>%
as.matrix() %>%
replace(!valid_pairs | is.na(.), 0) %>%
findCorrelation(., cutoff = corr_threshold, verbose = F, names = T)
clean_features <- clean_features[, !names(clean_features) %in% highly_correlated_features]
}
}
# Drop rows with a percentage of NA values above rows_nan_threshold
clean_features <- clean_features %>%
mutate(percentage_na = rowSums(is.na(.)) / ncol(.)) %>%
filter(percentage_na <= rows_nan_threshold) %>%
select(-percentage_na)
return(clean_features)
}

View File

@ -1,180 +0,0 @@
import pandas as pd
import numpy as np
import math, sys, random
import yaml
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
sys.path.append('/rapids/')
from src.features import empatica_data_yield as edy
pd.set_option('display.max_columns', 20)
def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
if 'phone_esm_straw_' + target in features:
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
else:
return features
# (2.1) QUALITY CHECK (DATA YIELD COLUMN) deletes the rows where E4 or phone data is low quality
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
if features.empty:
return features
features = edy.calculate_empatica_data_yield(features)
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
# Drop rows where phone data yield is less then given threshold
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
# Drop rows where empatica data yield is less then given threshold
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
if features.empty:
return features
# (2.2) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# (4) CONTEXTUAL IMPUTATION
# Impute selected phone features with a high number
impute_w_hn = [col for col in features.columns if \
"timeoffirstuse" in col or
"timeoflastuse" in col or
"timefirstcall" in col or
"timelastcall" in col or
"firstuseafter" in col or
"timefirstmessages" in col or
"timelastmessages" in col]
features[impute_w_hn] = features[impute_w_hn].fillna(1500)
# Impute special case (mostcommonactivity) and (homelabel)
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(-1000000) # Special case of imputation - nominal/ordinal value
# Impute selected phone features with 0
impute_zero = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_bluetooth_rapids_') or
col.startswith('phone_light_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_visible')]
features[impute_zero+list(esm_cols.columns)] = features[impute_zero+list(esm_cols.columns)].fillna(0)
## (5) STANDARDIZATION
if provider["STANDARDIZATION"]:
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
impute_cols = [col for col in features.columns if col not in excluded_columns]
features.reset_index(drop=True, inplace=True)
features[impute_cols] = impute(features[impute_cols], method="knn")
# (7) REMOVE COLS WHERE VARIANCE IS 0
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std(numeric_only=True)[features.std(numeric_only=True) == 0].index.values, axis=1, inplace=True)
fe5 = features.copy()
# (8) DROP HIGHLY CORRELATED FEATURES
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"] and features.shape[0]: # If small amount of segments (rows) is present, do not execute correlation check
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
corr_matrix = valid_features.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
to_drop = [column for column in upper.columns if any(upper[column] > drop_corr_features["CORR_THRESHOLD"])]
features.drop(to_drop, axis=1, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
if features.isna().any().any():
raise ValueError("There are still some NaNs present in the dataframe. Please check for implementation errors.")
return features
def k_nearest(df):
pd.set_option('display.max_columns', None)
imputer = KNNImputer(n_neighbors=3)
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
def impute(df, method='zero'):
return {
'zero': df.fillna(0),
'high_number': df.fillna(1500),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'knn': k_nearest(df)
}[method]
def graph_bf_af(features, phase_name, plt_flag=False):
if plt_flag:
sns.set(rc={"figure.figsize":(16, 8)})
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
print(f"\n-------------{phase_name}-------------")
print("Rows number:", features.shape[0])
print("Columns number:", len(features.columns))
print("---------------------------------------------\n")

View File

@ -1,89 +0,0 @@
source("renv/activate.R")
library(tidyr)
library("dplyr", warn.conflicts = F)
library(tidyverse)
library(caret)
library(corrr)
rapids_cleaning <- function(sensor_data_files, provider){
clean_features <- read.csv(sensor_data_files[["sensor_data"]], stringsAsFactors = FALSE)
impute_selected_event_features <- provider[["IMPUTE_SELECTED_EVENT_FEATURES"]]
cols_nan_threshold <- as.numeric(provider[["COLS_NAN_THRESHOLD"]])
drop_zero_variance_columns <- as.logical(provider[["COLS_VAR_THRESHOLD"]])
rows_nan_threshold <- as.numeric(provider[["ROWS_NAN_THRESHOLD"]])
data_yield_unit <- tolower(str_split_fixed(provider[["DATA_YIELD_FEATURE"]], "_", 4)[[4]])
data_yield_column <- paste0("phone_data_yield_rapids_ratiovalidyielded", data_yield_unit)
data_yield_ratio_threshold <- as.numeric(provider[["DATA_YIELD_RATIO_THRESHOLD"]])
drop_highly_correlated_features <- provider[["DROP_HIGHLY_CORRELATED_FEATURES"]]
# Impute selected event features
if(as.logical(impute_selected_event_features$COMPUTE)){
if(!"phone_data_yield_rapids_ratiovalidyieldedminutes" %in% colnames(clean_features)){
stop("Error: RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
}
column_names <- colnames(clean_features)
selected_apps_features <- column_names[grepl("^phone_applications_foreground_rapids_(countevent|countepisode|minduration|maxduration|meanduration|sumduration)", column_names)]
selected_battery_features <- column_names[grepl("^phone_battery_rapids_", column_names)]
selected_calls_features <- column_names[grepl("^phone_calls_rapids_.*_(count|distinctcontacts|sumduration|minduration|maxduration|meanduration|modeduration)", column_names)]
selected_keyboard_features <- column_names[grepl("^phone_keyboard_rapids_(sessioncount|averagesessionlength|changeintextlengthlessthanminusone|changeintextlengthequaltominusone|changeintextlengthequaltoone|changeintextlengthmorethanone|maxtextlength|totalkeyboardtouches)", column_names)]
selected_messages_features <- column_names[grepl("^phone_messages_rapids_.*_(count|distinctcontacts)", column_names)]
selected_screen_features <- column_names[grepl("^phone_screen_rapids_(sumduration|maxduration|minduration|avgduration|countepisode)", column_names)]
selected_wifi_features <- column_names[grepl("^phone_wifi_(connected|visible)_rapids_", column_names)]
selected_columns <- c(selected_apps_features, selected_battery_features, selected_calls_features, selected_keyboard_features, selected_messages_features, selected_screen_features, selected_wifi_features)
clean_features[selected_columns][is.na(clean_features[selected_columns]) & (clean_features$phone_data_yield_rapids_ratiovalidyieldedminutes > impute_selected_event_features$MIN_DATA_YIELDED_MINUTES_TO_IMPUTE)] <- 0
}
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
if(!data_yield_column %in% colnames(clean_features)){
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
}
if (data_yield_ratio_threshold > 0) {
clean_features <- clean_features %>%
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
}
# Drop columns with a percentage of NA values above cols_nan_threshold
if(nrow(clean_features))
clean_features <- clean_features %>% select(where(~ sum(is.na(.)) / length(.) <= cols_nan_threshold ), starts_with("phone_esm"))
# Drop columns with zero variance
if(drop_zero_variance_columns)
clean_features <- clean_features %>% select_if(grepl("pid|local_segment|local_segment_label|local_segment_start_datetime|local_segment_end_datetime|phone_esm",names(.)) | sapply(., n_distinct, na.rm = T) > 1)
# Drop highly correlated features
if(as.logical(drop_highly_correlated_features$COMPUTE)){
min_overlap_for_corr_threshold <- as.numeric(drop_highly_correlated_features$MIN_OVERLAP_FOR_CORR_THRESHOLD)
corr_threshold <- as.numeric(drop_highly_correlated_features$CORR_THRESHOLD)
features_for_corr <- clean_features %>%
select_if(is.numeric) %>%
select_if(sapply(., n_distinct, na.rm = T) > 1)
valid_pairs <- crossprod(!is.na(features_for_corr)) >= min_overlap_for_corr_threshold * nrow(features_for_corr)
if((nrow(features_for_corr) != 0) & (ncol(features_for_corr) != 0)){
highly_correlated_features <- features_for_corr %>%
correlate(use = "pairwise.complete.obs", method = "spearman") %>%
column_to_rownames(., var = "term") %>%
as.matrix() %>%
replace(!valid_pairs | is.na(.), 0) %>%
findCorrelation(., cutoff = corr_threshold, verbose = F, names = T)
clean_features <- clean_features[, !names(clean_features) %in% highly_correlated_features]
}
}
# Drop rows with a percentage of NA values above rows_nan_threshold
clean_features <- clean_features %>%
mutate(percentage_na = rowSums(is.na(.)) / ncol(.)) %>%
filter(percentage_na <= rows_nan_threshold) %>%
select(-percentage_na)
return(clean_features)
}

View File

@ -1,275 +0,0 @@
import pandas as pd
import numpy as np
import math, sys, random, warnings, yaml
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler, minmax_scale
import matplotlib.pyplot as plt
import seaborn as sns
sys.path.append('/rapids/')
from src.features import empatica_data_yield as edy
def straw_cleaning(sensor_data_files, provider, target):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
graph_bf_af(features, "1target_rows_before")
# (1.0) OVERRIDE STRESSFULNESS EVENT TARGETS IF ERS SEGMENTING_METHOD IS "STRESS_EVENT"
if config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["SEGMENTING_METHOD"] == "stress_event":
stress_events_targets = pd.read_csv("data/external/stress_event_targets.csv")
if "appraisal_stressfulness_event_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_stressfulness_event_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_stressfulness_event"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_stressfulness_event': 'phone_esm_straw_appraisal_stressfulness_event_mean'})
if "appraisal_threat_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_threat_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_threat"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_threat': 'phone_esm_straw_appraisal_threat_mean'})
if "appraisal_challenge_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_challenge_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_challenge"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_challenge': 'phone_esm_straw_appraisal_challenge_mean'})
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
# (1.1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
if features.empty:
return pd.DataFrame(columns=excluded_columns)
graph_bf_af(features, "2target_rows_after")
# (2) QUALITY CHECK (DATA YIELD COLUMN) drops the rows where E4 or phone data is low quality
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
features = edy.calculate_empatica_data_yield(features)
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
hist = features[["empatica_data_yield", phone_data_yield_column]].hist()
plt.savefig(f'phone_E4_histogram.png', bbox_inches='tight')
# Drop rows where phone data yield is less then given threshold
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
hist = features[phone_data_yield_column].hist(bins=5)
plt.close()
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
# Drop rows where empatica data yield is less then given threshold
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
if features.empty:
return pd.DataFrame(columns=excluded_columns)
graph_bf_af(features, "3data_yield_drop_rows")
if features.empty:
return pd.DataFrame(columns=excluded_columns)
# (3) CONTEXTUAL IMPUTATION
# Impute selected phone features with a high number
impute_w_hn = [col for col in features.columns if \
"timeoffirstuse" in col or
"timeoflastuse" in col or
"timefirstcall" in col or
"timelastcall" in col or
"firstuseafter" in col or
"timefirstmessages" in col or
"timelastmessages" in col]
features[impute_w_hn] = features[impute_w_hn].fillna(1500)
# Impute special case (mostcommonactivity) and (homelabel)
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
features[impute_w_sn3] = features[impute_w_sn3].fillna(-1000000) # Special case of imputation - loglocation
# Impute location features
impute_locations = [col for col in features \
if col.startswith('phone_locations_doryab_') and
'radiusgyration' not in col
]
# Impute selected phone, location, and esm features with 0
impute_zero = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_activity_recognition_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_bluetooth_rapids_') or
col.startswith('phone_light_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_bluetooth_doryab_') or
col.startswith('phone_wifi_visible')
]
features[impute_zero+impute_locations+list(esm_cols.columns)] = features[impute_zero+impute_locations+list(esm_cols.columns)].fillna(0)
pd.set_option('display.max_rows', None)
graph_bf_af(features, "4context_imp")
# (4) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
graph_bf_af(features, "5too_much_nans_cols")
# (5) REMOVE COLS WHERE VARIANCE IS 0
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std(numeric_only=True)[features.std(numeric_only=True) == 0].index.values, axis=1, inplace=True)
graph_bf_af(features, "6variance_drop")
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# (6) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
graph_bf_af(features, "7too_much_nans_rows")
if features.empty:
return pd.DataFrame(columns=excluded_columns)
# (7) STANDARDIZATION
if provider["STANDARDIZATION"]:
nominal_cols = [col for col in features.columns if "mostcommonactivity" in col or "homelabel" in col] # Excluded nominal features
# Expected warning within this code block
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
if provider["TARGET_STANDARDIZATION"]:
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"] + nominal_cols)] = \
features.loc[:, ~features.columns.isin(excluded_columns + nominal_cols)].groupby('pid').transform(lambda x: StandardScaler().fit_transform(x.values[:,np.newaxis]).ravel())
else:
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"] + nominal_cols + ['phone_esm_straw_' + target])] = \
features.loc[:, ~features.columns.isin(excluded_columns + nominal_cols + ['phone_esm_straw_' + target])].groupby('pid').transform(lambda x: StandardScaler().fit_transform(x.values[:,np.newaxis]).ravel())
graph_bf_af(features, "8standardization")
# (8) IMPUTATION: IMPUTE DATA WITH KNN METHOD
features.reset_index(drop=True, inplace=True)
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
features[impute_cols] = impute(features[impute_cols], method="knn")
graph_bf_af(features, "9knn_after")
# (9) DROP HIGHLY CORRELATED FEATURES
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"] and features.shape[0] > 5: # If small amount of segments (rows) is present, do not execute correlation check
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
corr_matrix = valid_features.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
to_drop = [column for column in upper.columns if any(upper[column] > drop_corr_features["CORR_THRESHOLD"])]
# sns.heatmap(corr_matrix, cmap="YlGnBu")
# plt.savefig(f'correlation_matrix.png', bbox_inches='tight')
# plt.close()
# s = corr_matrix.unstack()
# so = s.sort_values(ascending=False)
# pd.set_option('display.max_rows', None)
# sorted_upper = upper.unstack().sort_values(ascending=False)
# print(sorted_upper[sorted_upper > drop_corr_features["CORR_THRESHOLD"]])
features.drop(to_drop, axis=1, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
graph_bf_af(features, "10correlation_drop")
# Transform categorical columns to category dtype
cat1 = [col for col in features.columns if "mostcommonactivity" in col]
if cat1: # Transform columns to category dtype (mostcommonactivity)
features[cat1] = features[cat1].astype(int).astype('category')
cat2 = [col for col in features.columns if "homelabel" in col]
if cat2: # Transform columns to category dtype (homelabel)
features[cat2] = features[cat2].astype(int).astype('category')
# (10) DROP ALL WINDOW RELATED COLUMNS
win_count_cols = [col for col in features if "SO_windowsCount" in col]
if win_count_cols:
features.drop(columns=win_count_cols, inplace=True)
# (11) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
if features.isna().any().any():
raise ValueError("There are still some NaNs present in the dataframe. Please check for implementation errors.")
return features
def k_nearest(df):
imputer = KNNImputer(n_neighbors=3)
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
def impute(df, method='zero'):
return {
'zero': df.fillna(0),
'high_number': df.fillna(1500),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'knn': k_nearest(df)
}[method]
def graph_bf_af(features, phase_name, plt_flag=False):
if plt_flag:
sns.set(rc={"figure.figsize":(16, 8)})
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
print(f"\n-------------{phase_name}-------------")
print("Rows number:", features.shape[0])
print("Columns number:", len(features.columns))
print("NaN values:", features.isna().sum().sum())
print("---------------------------------------------\n")

View File

@ -1,59 +0,0 @@
import pandas as pd
import numpy as np
import math as m
import sys
def extract_second_order_features(intraday_features, so_features_names, prefix=""):
if prefix:
groupby_cols = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
else:
groupby_cols = ['local_segment']
if not intraday_features.empty:
so_features = pd.DataFrame()
#print(intraday_features.drop("level_1", axis=1).groupby(["local_segment"]).nsmallest())
if "mean" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).mean(numeric_only=True).add_suffix("_SO_mean")], axis=1)
if "median" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).median(numeric_only=True).add_suffix("_SO_median")], axis=1)
if "sd" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std(numeric_only=True).fillna(0).add_suffix("_SO_sd")], axis=1)
if "nlargest" in so_features_names: # largest 5 -- maybe there is a faster groupby solution?
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
so_features[column+"_SO_nlargest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nlargest(5).mean())
if "nsmallest" in so_features_names: # smallest 5 -- maybe there is a faster groupby solution?
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
so_features[column+"_SO_nsmallest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nsmallest(5).mean())
if "count_windows" in so_features_names:
so_features["SO_windowsCount"] = intraday_features.groupby(groupby_cols).count()[prefix+"level_1"]
# numPeaksNonZero specialized for EDA sensor
if "eda_num_peaks_non_zero" in so_features_names and prefix+"numPeaks" in intraday_features.columns:
so_features[prefix+"SO_numPeaksNonZero"] = intraday_features.groupby(groupby_cols)[prefix+"numPeaks"].apply(lambda x: (x!=0).sum())
# numWindowsNonZero specialized for BVP and IBI sensors
if "hrv_num_windows_non_nan" in so_features_names and prefix+"meanHr" in intraday_features.columns:
so_features[prefix+"SO_numWindowsNonNaN"] = intraday_features.groupby(groupby_cols)[prefix+"meanHr"].apply(lambda x: (~np.isnan(x)).sum())
so_features.reset_index(inplace=True)
else:
so_features = pd.DataFrame(columns=groupby_cols)
return so_features
def get_sample_rate(data): # To-Do get the sample rate information from the file's metadata
try:
timestamps_diff = data['timestamp'].diff().dropna().mean()
print("Timestamp diff:", timestamps_diff)
except:
raise Exception("Error occured while trying to get the mean sample rate from the data.")
return m.ceil(1000/timestamps_diff)

View File

@ -1,75 +0,0 @@
import pandas as pd
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, accelerometer_features, frequency_features
from cr_features.calculate_features_old import calculateFeatures
from cr_features.calculate_features import calculate_features
from cr_features_helper_methods import extract_second_order_features
import sys
def extract_acc_features_from_intraday_data(acc_intraday_data, features, window_length, time_segment, filter_data_by_segment):
acc_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not acc_intraday_data.empty:
sample_rate = 32
acc_intraday_data = filter_data_by_segment(acc_intraday_data, time_segment)
if not acc_intraday_data.empty:
acc_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
acc_intraday_features = \
acc_intraday_data.groupby('local_segment').apply(lambda x: calculate_features( \
convert_to2d(x['double_values_0'], x.shape[0]), \
convert_to2d(x['double_values_1'], x.shape[0]), \
convert_to2d(x['double_values_2'], x.shape[0]), \
fs=sample_rate, feature_names=features, show_progress=False))
else:
acc_intraday_features = \
acc_intraday_data.groupby('local_segment').apply(lambda x: calculate_features( \
convert_to2d(x['double_values_0'], window_length*sample_rate), \
convert_to2d(x['double_values_1'], window_length*sample_rate), \
convert_to2d(x['double_values_2'], window_length*sample_rate), \
fs=sample_rate, feature_names=features, show_progress=False))
acc_intraday_features.reset_index(inplace=True)
return acc_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'double_values_0': 'float64',
'double_values_1': 'float64', 'double_values_2': 'float64', 'local_date_time': 'str', 'local_date': "str",
'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
acc_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = accelerometer_features + frequency_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
acc_intraday_features = extract_acc_features_from_intraday_data(acc_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
acc_second_order_features = extract_second_order_features(acc_intraday_features, so_features_names)
return acc_intraday_features, acc_second_order_features
return acc_intraday_features

View File

@ -1,73 +0,0 @@
import pandas as pd
from sklearn.preprocessing import StandardScaler
from cr_features.helper_functions import convert_to2d, hrv_features
from cr_features.hrv import extract_hrv_features_2d_wrapper
from cr_features_helper_methods import extract_second_order_features
import sys
# pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', None)
def extract_bvp_features_from_intraday_data(bvp_intraday_data, features, window_length, time_segment, filter_data_by_segment):
bvp_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not bvp_intraday_data.empty:
sample_rate = 64
bvp_intraday_data = filter_data_by_segment(bvp_intraday_data, time_segment)
if not bvp_intraday_data.empty:
bvp_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
bvp_intraday_features = \
bvp_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
convert_to2d(x['blood_volume_pulse'], x.shape[0]),
sampling=sample_rate, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
else:
bvp_intraday_features = \
bvp_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
convert_to2d(x['blood_volume_pulse'], window_length*sample_rate),
sampling=sample_rate, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
bvp_intraday_features.reset_index(inplace=True)
return bvp_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
bvp_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = hrv_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
bvp_intraday_features = extract_bvp_features_from_intraday_data(bvp_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
bvp_second_order_features = extract_second_order_features(bvp_intraday_features, so_features_names)
return bvp_intraday_features, bvp_second_order_features
return bvp_intraday_features

View File

@ -1,32 +0,0 @@
import pandas as pd
import numpy as np
from datetime import datetime
import sys, yaml
def calculate_empatica_data_yield(features): # TODO
# Get time segment duration in seconds from all segments in features dataframe
datetime_start = pd.to_datetime(features['local_segment_start_datetime'], format='%Y-%m-%d %H:%M:%S')
datetime_end = pd.to_datetime(features['local_segment_end_datetime'], format='%Y-%m-%d %H:%M:%S')
tseg_duration = (datetime_end - datetime_start).dt.total_seconds()
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
sensors = ["EMPATICA_ACCELEROMETER", "EMPATICA_TEMPERATURE", "EMPATICA_ELECTRODERMAL_ACTIVITY", "EMPATICA_INTER_BEAT_INTERVAL"]
for sensor in sensors:
features[f"{sensor.lower()}_data_yield"] = \
(features[f"{sensor.lower()}_cr_SO_windowsCount"] * config[sensor]["PROVIDERS"]["CR"]["WINDOWS"]["WINDOW_LENGTH"]) / tseg_duration \
if f'{sensor.lower()}_cr_SO_windowsCount' in features else 0
empatica_data_yield_cols = [sensor.lower() + "_data_yield" for sensor in sensors]
pd.set_option('display.max_rows', None)
# Assigns 1 to values that are over 1 (in case of windows not being filled fully)
features[empatica_data_yield_cols] = features[empatica_data_yield_cols].apply(lambda x: [y if y <= 1 or np.isnan(y) else 1 for y in x])
features["empatica_data_yield"] = features[empatica_data_yield_cols].mean(axis=1, numeric_only=True).fillna(0)
features.drop(empatica_data_yield_cols, axis=1, inplace=True) # In case of if the advanced operations will later not be needed (e.g., weighted average)
return features

View File

@ -1,82 +0,0 @@
import pandas as pd
import numpy as np
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, gsr_features
from cr_features.calculate_features import calculate_features
from cr_features.gsr import extractGsrFeatures2D
from cr_features_helper_methods import extract_second_order_features
import sys
#pd.set_option('display.max_columns', None)
#pd.set_option('display.max_rows', None)
#np.seterr(invalid='ignore')
def extract_eda_features_from_intraday_data(eda_intraday_data, features, window_length, time_segment, filter_data_by_segment):
eda_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not eda_intraday_data.empty:
sample_rate = 4
eda_intraday_data = filter_data_by_segment(eda_intraday_data, time_segment)
if not eda_intraday_data.empty:
eda_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
eda_intraday_features = \
eda_intraday_data.groupby('local_segment').apply(\
lambda x: extractGsrFeatures2D(convert_to2d(x['electrodermal_activity'], x.shape[0]), sampleRate=sample_rate, featureNames=features,
threshold=.01, offset=1, riseTime=5, decayTime=15))
else:
eda_intraday_features = \
eda_intraday_data.groupby('local_segment').apply(\
lambda x: extractGsrFeatures2D(convert_to2d(x['electrodermal_activity'], window_length*sample_rate), sampleRate=sample_rate, featureNames=features,
threshold=.01, offset=1, riseTime=5, decayTime=15))
eda_intraday_features.reset_index(inplace=True)
return eda_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'electrodermal_activity': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
eda_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = gsr_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
eda_intraday_features = extract_eda_features_from_intraday_data(eda_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
if provider["WINDOWS"]["IMPUTE_NANS"]:
eda_intraday_features[eda_intraday_features["numPeaks"] == 0] = \
eda_intraday_features[eda_intraday_features["numPeaks"] == 0].fillna(0)
pd.set_option('display.max_columns', None)
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
eda_second_order_features = extract_second_order_features(eda_intraday_features, so_features_names)
return eda_intraday_features, eda_second_order_features
return eda_intraday_features

View File

@ -1,83 +0,0 @@
import pandas as pd
from sklearn.preprocessing import StandardScaler
import numpy as np
from cr_features.helper_functions import convert_ibi_to2d_time, hrv_features
from cr_features.hrv import extract_hrv_features_2d_wrapper, get_HRV_features
from cr_features_helper_methods import extract_second_order_features
import math
import sys
# pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', None)
def extract_ibi_features_from_intraday_data(ibi_intraday_data, features, window_length, time_segment, filter_data_by_segment):
ibi_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not ibi_intraday_data.empty:
ibi_intraday_data = filter_data_by_segment(ibi_intraday_data, time_segment)
if not ibi_intraday_data.empty:
ibi_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
ibi_intraday_features = \
ibi_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
signal_2D = \
convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], math.ceil(x['timings'].iloc[-1]))[0],
ibi_timings = \
convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], math.ceil(x['timings'].iloc[-1]))[1],
sampling=None, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
else:
ibi_intraday_features = \
ibi_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
signal_2D = convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], window_length)[0],
ibi_timings = convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], window_length)[1],
sampling=None, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
ibi_intraday_features.reset_index(inplace=True)
return ibi_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'inter_beat_interval': 'float64', 'timings': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
ibi_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = hrv_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
ibi_intraday_features = extract_ibi_features_from_intraday_data(ibi_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
ibi_second_order_features = extract_second_order_features(ibi_intraday_features, so_features_names)
return ibi_intraday_features, ibi_second_order_features
return ibi_intraday_features

View File

@ -1,68 +0,0 @@
import pandas as pd
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, generic_features
from cr_features.calculate_features_old import calculateFeatures
from cr_features.calculate_features import calculate_features
from cr_features_helper_methods import extract_second_order_features
import sys
def extract_temp_features_from_intraday_data(temperature_intraday_data, features, window_length, time_segment, filter_data_by_segment):
temperature_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not temperature_intraday_data.empty:
sample_rate = 4
temperature_intraday_data = filter_data_by_segment(temperature_intraday_data, time_segment)
if not temperature_intraday_data.empty:
temperature_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], x.shape[0]), fs=sample_rate, feature_names=features, show_progress=False))
else:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], window_length*sample_rate), fs=sample_rate, feature_names=features, show_progress=False))
temperature_intraday_features.reset_index(inplace=True)
return temperature_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'temperature': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = generic_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
temperature_intraday_features = extract_temp_features_from_intraday_data(temperature_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
temperature_second_order_features = extract_second_order_features(temperature_intraday_features, so_features_names)
return temperature_intraday_features, temperature_second_order_features
return temperature_intraday_features

View File

@ -4,19 +4,13 @@ library("dplyr",warn.conflicts = F)
library("tidyr")
sensor_data_files <- snakemake@input
sensor_data_files$time_segments_labels <- NULL
time_segments_file <- snakemake@input[["time_segments_labels"]]
provider <- snakemake@params["provider"][["provider"]]
provider_key <- snakemake@params["provider_key"]
sensor_key <- snakemake@params["sensor_key"]
if(sensor_key == "all_cleaning_individual" | sensor_key == "all_cleaning_overall"){
# Data cleaning
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files)
}else{
# Extract sensor features
sensor_data_files$time_segments_labels <- NULL
time_segments_file <- snakemake@input[["time_segments_labels"]]
sensor_features <- fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file)
}
sensor_features <- fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file)
write.csv(sensor_features, snakemake@output[[1]], row.names = FALSE)

View File

@ -1,38 +1,14 @@
import pandas as pd
from utils.utils import fetch_provider_features, run_provider_cleaning_script
import sys
from utils.utils import fetch_provider_features
sensor_data_files = dict(snakemake.input)
del sensor_data_files["time_segments_labels"]
time_segments_file = snakemake.input["time_segments_labels"]
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_key = snakemake.params["sensor_key"]
calc_windows = True if (provider.get("WINDOWS", False) and provider["WINDOWS"].get("COMPUTE", False)) else False
sensor_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file)
if sensor_key == "all_cleaning_individual" or sensor_key == "all_cleaning_overall":
# Data cleaning
if "overall" in sensor_key:
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files, snakemake.params["target"])
else:
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files)
else:
# Extract sensor features
del sensor_data_files["time_segments_labels"]
time_segments_file = snakemake.input["time_segments_labels"]
if calc_windows:
window_features, second_order_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=True)
window_features.to_csv(snakemake.output[1], index=False)
second_order_features.to_csv(snakemake.output[0], index=False)
elif "empatica" in sensor_key:
pd.DataFrame().to_csv(snakemake.output[1], index=False)
if not calc_windows:
sensor_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=False)
if not calc_windows:
sensor_features.to_csv(snakemake.output[0], index=False)
sensor_features.to_csv(snakemake.output[0], index=False)

View File

@ -1,4 +1,5 @@
import pandas as pd
import numpy as np
def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
@ -30,13 +31,11 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
if "duration" + column.lower() in features_to_compute:
filtered_data = ar_episodes[ar_episodes["activity_name"].isin(pd.Series(activity_labels))]
if not filtered_data.empty:
ar_features["duration" + column.lower()] = ar_episodes[ar_episodes["activity_name"].isin(pd.Series(activity_labels))].groupby(["local_segment"])["duration"].sum()
ar_features["duration" + column.lower()] = ar_episodes[ar_episodes["activity_name"].isin(pd.Series(activity_labels))].groupby(["local_segment"])["duration"].sum().fillna(0)
else:
ar_features["duration" + column.lower()] = 0
ar_features.index.names = ["local_segment"]
ar_features = ar_features.reset_index()
ar_features.fillna(value={"count": 0, "countuniqueactivities": 0, "durationstationary": 0, "durationmobile": 0, "durationvehicle": 0, "mostcommonactivity": 4}, inplace=True)
return ar_features

View File

@ -9,41 +9,57 @@ def compute_features(filtered_data, apps_type, requested_features, apps_features
if "timeoffirstuse" in requested_features:
time_first_event = filtered_data.sort_values(by="timestamp", ascending=True).drop_duplicates(subset="local_segment", keep="first").set_index("local_segment")
if time_first_event.empty:
apps_features["timeoffirstuse" + apps_type] = 1500 # np.nan
apps_features["timeoffirstuse" + apps_type] = np.nan
else:
apps_features["timeoffirstuse" + apps_type] = time_first_event["local_hour"] * 60 + time_first_event["local_minute"]
if "timeoflastuse" in requested_features:
time_last_event = filtered_data.sort_values(by="timestamp", ascending=False).drop_duplicates(subset="local_segment", keep="first").set_index("local_segment")
if time_last_event.empty:
apps_features["timeoflastuse" + apps_type] = 1500 # np.nan
apps_features["timeoflastuse" + apps_type] = np.nan
else:
apps_features["timeoflastuse" + apps_type] = time_last_event["local_hour"] * 60 + time_last_event["local_minute"]
if "frequencyentropy" in requested_features:
apps_with_count = filtered_data.groupby(["local_segment","application_name"]).count().sort_values(by="timestamp", ascending=False).reset_index()
if (len(apps_with_count.index) < 2 ):
apps_features["frequencyentropy" + apps_type] = 0 # np.nan
apps_features["frequencyentropy" + apps_type] = np.nan
else:
apps_features["frequencyentropy" + apps_type] = apps_with_count.groupby("local_segment")["timestamp"].agg(entropy)
if "countevent" in requested_features:
apps_features["countevent" + apps_type] = filtered_data.groupby(["local_segment"]).count()["timestamp"]
apps_features.fillna(value={"countevent" + apps_type: 0}, inplace=True)
if "countepisode" in requested_features:
apps_features["countepisode" + apps_type] = filtered_data.groupby(["local_segment"]).count()["start_timestamp"]
apps_features.fillna(value={"countepisode" + apps_type: 0}, inplace=True)
if "minduration" in requested_features:
apps_features["minduration" + apps_type] = filtered_data.groupby(by = ["local_segment"])["duration"].min()
grouped_data = filtered_data.groupby(by = ['local_segment'])['duration'].min()
if grouped_data.empty:
apps_features["minduration" + apps_type] = np.nan
else:
apps_features["minduration" + apps_type] = grouped_data
if "maxduration" in requested_features:
apps_features["maxduration" + apps_type] = filtered_data.groupby(by = ["local_segment"])["duration"].max()
grouped_data = filtered_data.groupby(by = ['local_segment'])['duration'].max()
if grouped_data.empty:
apps_features["maxduration" + apps_type] = np.nan
else:
apps_features["maxduration" + apps_type] = grouped_data
if "meanduration" in requested_features:
apps_features["meanduration" + apps_type] = filtered_data.groupby(by = ["local_segment"])["duration"].mean()
grouped_data = filtered_data.groupby(by = ['local_segment'])['duration'].mean()
if grouped_data.empty:
apps_features["meanduration" + apps_type] = np.nan
else:
apps_features["meanduration" + apps_type] = grouped_data
if "sumduration" in requested_features:
apps_features["sumduration" + apps_type] = filtered_data.groupby(by = ["local_segment"])["duration"].sum()
apps_features.index.names = ["local_segment"]
grouped_data = filtered_data.groupby(by = ['local_segment'])['duration'].sum()
if grouped_data.empty:
apps_features["sumduration" + apps_type] = np.nan
else:
apps_features["sumduration" + apps_type] = grouped_data
apps_features.index.names = ['local_segment']
return apps_features
def process_app_features(data, requested_features, time_segment, provider, filter_data_by_segment):
@ -129,6 +145,4 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
features = pd.merge(episodes_features, features, how='outer', on='local_segment')
features.fillna(value={feature_name: 0 for feature_name in features.columns if feature_name.startswith(("countevent", "countepisode", "minduration", "maxduration", "meanduration", "sumduration"))}, inplace=True)
return features

View File

@ -14,8 +14,8 @@ def deviceFeatures(devices, ownership, common_devices, features_to_compute, feat
features = features.join(device_value_counts.groupby("local_segment")["bt_address"].nunique().to_frame("uniquedevices" + ownership), how="outer")
if "meanscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].mean().to_frame("meanscans" + ownership), how="outer")
if "stdscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].std().to_frame("stdscans" + ownership).fillna(0), how="outer")
if "stdscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].std().to_frame("stdscans" + ownership), how="outer")
# Most frequent device within segments, across segments, and across dataset
if "countscansmostfrequentdevicewithinsegments" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].max().to_frame("countscansmostfrequentdevicewithinsegments" + ownership), how="outer")

View File

@ -88,16 +88,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
features <- call_features_of_type(calls_of_type, features_type, call_type, time_segment, requested_features)
call_features <- merge(call_features, features, all=TRUE)
}
# Fill seleted columns with a high number
time_cols <- select(call_features, contains("timefirstcall") | contains("timelastcall")) %>%
colnames(.)
call_features <- call_features %>%
mutate_at(., time_cols, ~replace(., is.na(.), 1500))
# Fill NA values with 0
call_features <- call_features %>% mutate_all(~replace(., is.na(.), 0))
call_features <- call_features %>% mutate_at(vars(contains("countmostfrequentcontact") | contains("distinctcontacts") | contains("count")), list( ~ replace_na(., 0)))
return(call_features)
}

View File

@ -140,7 +140,7 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
if "voicemaxenergy" in features_to_compute:
conversation_features["voicemaxenergy"] = conversation_data[conversation_data['inference']==2].groupby(["local_segment"])["double_energy"].max()
conversation_features.fillna(value={feature_name: 0 for feature_name in conversation_features.columns if feature_name not in ["timefirstconversation", "timelastconversation", "sdconversationduration", "noisesdenergy", "voicesdenergy"]}, inplace=True)
conversation_features = conversation_features.reset_index()
return conversation_features

View File

@ -3,11 +3,9 @@ library(tidyr)
library(readr)
compute_data_yield_features <- function(data, feature_name, time_segment, provider){
data <- data %>% filter_data_by_segment(time_segment)
if(nrow(data) == 0){
if(nrow(data) == 0)
return(tibble(local_segment = character(), ratiovalidyieldedminutes = numeric(), ratiovalidyieldedhours = numeric()))
}
features <- data %>%
separate(timestamps_segment, into = c("start_timestamp", "end_timestamp"), convert = T, sep = ",") %>%
mutate(duration_minutes = (end_timestamp - start_timestamp) / 60000,

View File

@ -1,274 +0,0 @@
from collections.abc import Collection
import numpy as np
import pandas as pd
from pytz import timezone
import datetime, json
# from config.models import ESM, Participant
# from features import helper
ESM_STATUS_ANSWERED = 2
GROUP_SESSIONS_BY = ["device_id", "esm_session"] # 'participant_id
SESSION_STATUS_UNANSWERED = "ema_unanswered"
SESSION_STATUS_DAY_FINISHED = "day_finished"
SESSION_STATUS_COMPLETE = "ema_completed"
ANSWER_DAY_FINISHED = "DayFinished3421"
ANSWER_DAY_OFF = "DayOff3421"
ANSWER_SET_EVENING = "DayFinishedSetEvening"
MAX_MORNING_LENGTH = 3
# When the participants was not yet at work at the time of the first (morning) EMA,
# only three items were answered.
# Two sleep related items and one indicating NOT starting work yet.
# Daytime EMAs are all longer, in fact they always consist of at least 6 items.
TZ_LJ = timezone("Europe/Ljubljana")
COLUMN_TIMESTAMP = "timestamp"
COLUMN_TIMESTAMP_ESM = "double_esm_user_answer_timestamp"
def get_date_from_timestamp(df_aware) -> pd.DataFrame:
"""
Transform a UNIX timestamp into a datetime (with Ljubljana timezone).
Additionally, extract only the date part, where anything until 4 AM is considered the same day.
Parameters
----------
df_aware: pd.DataFrame
Any AWARE-type data as defined in models.py.
Returns
-------
df_aware: pd.DataFrame
The same dataframe with datetime_lj and date_lj columns added.
"""
if COLUMN_TIMESTAMP_ESM in df_aware:
column_timestamp = COLUMN_TIMESTAMP_ESM
else:
column_timestamp = COLUMN_TIMESTAMP
df_aware["datetime_lj"] = df_aware[column_timestamp].apply(
lambda x: datetime.datetime.fromtimestamp(x / 1000.0, tz=TZ_LJ)
)
df_aware = df_aware.assign(
date_lj=lambda x: (x.datetime_lj - datetime.timedelta(hours=4)).dt.date
)
# Since daytime EMAs could *theoretically* last beyond midnight, but never after 4 AM,
# the datetime is first translated to 4 h earlier.
return df_aware
def preprocess_esm(df_esm: pd.DataFrame) -> pd.DataFrame:
"""
Convert timestamps into human-readable datetimes and dates
and expand the JSON column into several Pandas DF columns.
Parameters
----------
df_esm: pd.DataFrame
A dataframe of esm data.
Returns
-------
df_esm_preprocessed: pd.DataFrame
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
"""
df_esm = get_date_from_timestamp(df_esm)
df_esm_json = df_esm["esm_json"].apply(json.loads)
df_esm_json = pd.json_normalize(df_esm_json).drop(
columns=["esm_trigger"]
) # The esm_trigger column is already present in the main df.
return df_esm.join(df_esm_json)
def classify_sessions_by_completion(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
"""
For each distinct EMA session, determine how the participant responded to it.
Possible outcomes are: SESSION_STATUS_UNANSWERED, SESSION_STATUS_DAY_FINISHED, and SESSION_STATUS_COMPLETE
This is done in three steps.
First, the esm_status is considered.
If any of the ESMs in a session has a status *other than* "answered", then this session is taken as unfinished.
Second, the sessions which do not represent full questionnaires are identified.
These are sessions where participants only marked they are finished with the day or have not yet started working.
Third, the sessions with only one item are marked with their trigger.
We never offered questionnaires with single items, so we can be sure these are unfinished.
Finally, all sessions that remain are marked as completed.
By going through different possibilities in expl_esm_adherence.ipynb, this turned out to be a reasonable option.
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_counts: pd.Dataframe
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with their statuses and the number of items.
"""
sessions_grouped = df_esm_preprocessed.groupby(GROUP_SESSIONS_BY)
# 0. First, assign all session statuses as NaN.
df_session_counts = pd.DataFrame(sessions_grouped.count()["timestamp"]).rename(
columns={"timestamp": "esm_session_count"}
)
df_session_counts["session_response"] = np.nan
# 1. Identify all ESMs with status other than answered.
esm_not_answered = sessions_grouped.apply(
lambda x: (x.esm_status != ESM_STATUS_ANSWERED).any()
)
df_session_counts.loc[
esm_not_answered, "session_response"
] = SESSION_STATUS_UNANSWERED
# 2. Identify non-sessions, i.e. answers about the end of the day.
non_session = sessions_grouped.apply(
lambda x: (
(x.esm_user_answer == ANSWER_DAY_FINISHED) # I finished working for today.
| (x.esm_user_answer == ANSWER_DAY_OFF) # I am not going to work today.
| (
x.esm_user_answer == ANSWER_SET_EVENING
) # When would you like to answer the evening EMA?
).any()
)
df_session_counts.loc[non_session, "session_response"] = SESSION_STATUS_DAY_FINISHED
# 3. Identify sessions appearing only once, as those were not true EMAs for sure.
singleton_sessions = (df_session_counts.esm_session_count == 1) & (
df_session_counts.session_response.isna()
)
df_session_1 = df_session_counts[singleton_sessions]
df_esm_unique_session = df_session_1.join(
df_esm_preprocessed.set_index(GROUP_SESSIONS_BY), how="left"
)
df_esm_unique_session = df_esm_unique_session.assign(
session_response=lambda x: x.esm_trigger
)["session_response"]
df_session_counts.loc[
df_esm_unique_session.index, "session_response"
] = df_esm_unique_session
# 4. Mark the remaining sessions as completed.
df_session_counts.loc[
df_session_counts.session_response.isna(), "session_response"
] = SESSION_STATUS_COMPLETE
return df_session_counts
def classify_sessions_by_time(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
"""
For each EMA session, determine the time of the first user answer and its time type (morning, workday, or evening.)
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_time: pd.DataFrame
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with their time type and timestamp of first answer.
"""
df_session_time = (
df_esm_preprocessed.sort_values(["datetime_lj"]) # "participant_id"
.groupby(GROUP_SESSIONS_BY)
.first()[["time", "datetime_lj"]]
)
return df_session_time
def classify_sessions_by_completion_time(
df_esm_preprocessed: pd.DataFrame,
) -> pd.DataFrame:
"""
The point of this function is to not only classify sessions by using the previously defined functions.
It also serves to "correct" the time type of some EMA sessions.
A morning questionnaire could seamlessly transition into a daytime questionnaire,
if the participant was already at work.
In this case, the "time" label changed mid-session.
Because of the way classify_sessions_by_time works, this questionnaire was classified as "morning".
But for all intents and purposes, it can be treated as a "daytime" EMA.
The way this scenario is differentiated from a true "morning" questionnaire,
where the participants NOT yet at work, is by considering their length.
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_counts_time: pd.DataFrame
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with statuses, the number of items,
their time type (with some morning EMAs reclassified) and timestamp of first answer.
"""
df_session_counts = classify_sessions_by_completion(df_esm_preprocessed)
df_session_time = classify_sessions_by_time(df_esm_preprocessed)
df_session_counts_time = df_session_time.join(df_session_counts)
morning_transition_to_daytime = (df_session_counts_time.time == "morning") & (
df_session_counts_time.esm_session_count > MAX_MORNING_LENGTH
)
df_session_counts_time.loc[morning_transition_to_daytime, "time"] = "daytime"
return df_session_counts_time
# def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
# """
# This function eliminates invalid ESM responses.
# It removes unanswered ESMs and those that indicate end of work and similar.
# It also extracts a numeric answer from strings such as "4 - I strongly agree".
# Parameters
# ----------
# df_esm_preprocessed: pd.DataFrame
# A preprocessed dataframe of esm data.
# Returns
# -------
# df_esm_clean: pd.DataFrame
# A subset of the original dataframe.
# """
# df_esm_clean = df_esm_preprocessed[
# df_esm_preprocessed["esm_status"] == ESM_STATUS_ANSWERED
# ]
# df_esm_clean = df_esm_clean[
# ~df_esm_clean["esm_user_answer"].isin(
# [ANSWER_DAY_FINISHED, ANSWER_DAY_OFF, ANSWER_SET_EVENING]
# )
# ]
# df_esm_clean["esm_user_answer_numeric"] = np.nan
# esm_type_numeric = [
# ESM.ESM_TYPE.get("radio"),
# ESM.ESM_TYPE.get("scale"),
# ESM.ESM_TYPE.get("number"),
# ]
# df_esm_clean.loc[
# df_esm_clean["esm_type"].isin(esm_type_numeric)
# ] = df_esm_clean.loc[df_esm_clean["esm_type"].isin(esm_type_numeric)].assign(
# esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
# int
# )
# )
# return df_esm_clean

View File

@ -1,108 +0,0 @@
import pandas as pd
JCQ_ORIGINAL_MAX = 4
JCQ_ORIGINAL_MIN = 1
dict_JCQ_demand_control_reverse = {
75: (
"I was NOT asked",
"Men legde mij geen overdreven",
"Men legde mij GEEN overdreven", # Capitalized in some versions
"Od mene se NI zahtevalo",
),
76: (
"I had enough time to do my work",
"Ik had voldoende tijd om mijn werk",
"Imela sem dovolj časa, da končam",
"Imel sem dovolj časa, da končam",
),
77: (
"I was free of conflicting demands",
"Er werden mij op het werk geen tegenstrijdige",
"Er werden mij op het werk GEEN tegenstrijdige", # Capitalized in some versions
"Pri svojem delu se NISEM srečeval",
),
79: (
"My job involved a lot of repetitive work",
"Mijn taak omvatte veel repetitief werk",
"Moje delo je vključevalo veliko ponavljajočega",
),
85: (
"On my job, I had very little freedom",
"In mijn taak had ik zeer weinig vrijheid",
"Pri svojem delu sem imel zelo malo svobode",
"Pri svojem delu sem imela zelo malo svobode",
),
}
def reverse_jcq_demand_control_scoring(
df_esm_jcq_demand_control: pd.DataFrame,
) -> pd.DataFrame:
"""
This function recodes answers in Job content questionnaire by first incrementing them by 1,
to be in line with original (1-4) scoring.
Then, some answers are reversed (i.e. 1 becomes 4 etc.), because the questions are negatively phrased.
These answers are listed in dict_JCQ_demand_control_reverse and identified by their question ID.
However, the existing data is checked against literal phrasing of these questions
to protect against wrong numbering of questions (differing question IDs).
Parameters
----------
df_esm_jcq_demand_control: pd.DataFrame
A cleaned up dataframe, which must also include esm_user_answer_numeric.
Returns
-------
df_esm_jcq_demand_control: pd.DataFrame
The same dataframe with a column esm_user_score containing answers recoded and reversed.
"""
df_esm_jcq_demand_control_unique_answers = (
df_esm_jcq_demand_control.groupby("question_id")
.esm_instructions.value_counts()
.rename()
.reset_index()
)
# Tabulate all possible answers to each question (group by question ID).
for q_id in dict_JCQ_demand_control_reverse.keys():
# Look through all answers that need to be reversed.
possible_answers = df_esm_jcq_demand_control_unique_answers.loc[
df_esm_jcq_demand_control_unique_answers["question_id"] == q_id,
"esm_instructions",
]
# These are all answers to a given question (by q_id).
answers_matches = possible_answers.str.startswith(
dict_JCQ_demand_control_reverse.get(q_id)
)
# See if they are expected, i.e. included in the dictionary.
if ~answers_matches.all():
print("One of the answers that occur in the data should not be reversed.")
print("This was the answer found in the data: ")
raise KeyError(possible_answers[~answers_matches])
# In case there is an unexpected answer, raise an exception.
try:
df_esm_jcq_demand_control = df_esm_jcq_demand_control.assign(
esm_user_score=lambda x: x.esm_user_answer_numeric + 1
)
# Increment the original answer by 1
# to keep in line with traditional scoring (JCQ_ORIGINAL_MIN - JCQ_ORIGINAL_MAX).
df_esm_jcq_demand_control[
df_esm_jcq_demand_control["question_id"].isin(
dict_JCQ_demand_control_reverse.keys()
)
] = df_esm_jcq_demand_control[
df_esm_jcq_demand_control["question_id"].isin(
dict_JCQ_demand_control_reverse.keys()
)
].assign(
esm_user_score=lambda x: JCQ_ORIGINAL_MAX
+ JCQ_ORIGINAL_MIN
- x.esm_user_score
)
# Reverse the items that require it.
except AttributeError as e:
print("Please, clean the dataframe first using features.esm.clean_up_esm.")
print(e)
return df_esm_jcq_demand_control

View File

@ -1,135 +0,0 @@
import json
import numpy as np
import pandas as pd
ESM_TYPE = {
"text": 1,
"radio": 2,
"checkbox": 3,
"likert": 4,
"quick_answers": 5,
"scale": 6,
"datetime": 7,
"pam": 8,
"number": 9,
"web": 10,
"date": 11,
}
QUESTIONNAIRE_IDS = {
"sleep_quality": 1,
"PANAS_positive_affect": 8,
"PANAS_negative_affect": 9,
"JCQ_job_demand": 10,
"JCQ_job_control": 11,
"JCQ_supervisor_support": 12,
"JCQ_coworker_support": 13,
"PFITS_supervisor": 14,
"PFITS_coworkers": 15,
"UWES_vigor": 16,
"UWES_dedication": 17,
"UWES_absorption": 18,
"COPE_active": 19,
"COPE_support": 20,
"COPE_emotions": 21,
"balance_life_work": 22,
"balance_work_life": 23,
"recovery_experience_detachment": 24,
"recovery_experience_relaxation": 25,
"symptoms": 26,
"appraisal_stressfulness_event": 87,
"appraisal_threat": 88,
"appraisal_challenge": 89,
"appraisal_event_time": 90,
"appraisal_event_duration": 91,
"appraisal_event_work_related": 92,
"appraisal_stressfulness_period": 93,
"late_work": 94,
"work_hours": 95,
"left_work": 96,
"activities": 97,
"coffee_breaks": 98,
"at_work_yet": 99,
}
ESM_STATUS_ANSWERED = 2
GROUP_SESSIONS_BY = ["participant_id", "device_id", "esm_session"]
SESSION_STATUS_UNANSWERED = "ema_unanswered"
SESSION_STATUS_DAY_FINISHED = "day_finished"
SESSION_STATUS_COMPLETE = "ema_completed"
ANSWER_DAY_FINISHED = "DayFinished3421"
ANSWER_DAY_OFF = "DayOff3421"
ANSWER_SET_EVENING = "DayFinishedSetEvening"
MAX_MORNING_LENGTH = 3
# When the participants was not yet at work at the time of the first (morning) EMA,
# only three items were answered.
# Two sleep related items and one indicating NOT starting work yet.
# Daytime EMAs are all longer, in fact they always consist of at least 6 items.
def preprocess_esm(df_esm: pd.DataFrame) -> pd.DataFrame:
"""
Convert timestamps into human-readable datetimes and dates
and expand the JSON column into several Pandas DF columns.
Parameters
----------
df_esm: pd.DataFrame
A dataframe of esm data.
Returns
-------
df_esm_preprocessed: pd.DataFrame
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
"""
df_esm_json = df_esm["esm_json"].apply(json.loads)
df_esm_json = pd.json_normalize(df_esm_json).drop(
columns=["esm_trigger"]
) # The esm_trigger column is already present in the main df.
return df_esm.join(df_esm_json)
def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
"""
This function eliminates invalid ESM responses.
It removes unanswered ESMs and those that indicate end of work and similar.
It also extracts a numeric answer from strings such as "4 - I strongly agree".
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data.
Returns
-------
df_esm_clean: pd.DataFrame
A subset of the original dataframe.
"""
df_esm_clean = df_esm_preprocessed[
df_esm_preprocessed["esm_status"] == ESM_STATUS_ANSWERED
]
df_esm_clean = df_esm_clean[
~df_esm_clean["esm_user_answer"].isin(
[ANSWER_DAY_FINISHED, ANSWER_DAY_OFF, ANSWER_SET_EVENING]
)
]
df_esm_clean["esm_user_answer_numeric"] = np.nan
esm_type_numeric = [
ESM_TYPE.get("radio"),
ESM_TYPE.get("scale"),
ESM_TYPE.get("number"),
]
df_esm_clean.loc[
df_esm_clean["esm_type"].isin(esm_type_numeric)
] = df_esm_clean.loc[df_esm_clean["esm_type"].isin(esm_type_numeric)].assign(
esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
int
)
)
return df_esm_clean

View File

@ -1,66 +0,0 @@
import pandas as pd
QUESTIONNAIRE_IDS = {
"sleep_quality": 1,
"PANAS_positive_affect": 8,
"PANAS_negative_affect": 9,
"JCQ_job_demand": 10,
"JCQ_job_control": 11,
"JCQ_supervisor_support": 12,
"JCQ_coworker_support": 13,
"PFITS_supervisor": 14,
"PFITS_coworkers": 15,
"UWES_vigor": 16,
"UWES_dedication": 17,
"UWES_absorption": 18,
"COPE_active": 19,
"COPE_support": 20,
"COPE_emotions": 21,
"balance_life_work": 22,
"balance_work_life": 23,
"recovery_experience_detachment": 24,
"recovery_experience_relaxation": 25,
"symptoms": 26,
"appraisal_stressfulness_event": 87,
"appraisal_threat": 88,
"appraisal_challenge": 89,
"appraisal_event_time": 90,
"appraisal_event_duration": 91,
"appraisal_event_work_related": 92,
"appraisal_stressfulness_period": 93,
"late_work": 94,
"work_hours": 95,
"left_work": 96,
"activities": 97,
"coffee_breaks": 98,
"at_work_yet": 99,
}
def straw_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
esm_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_features = provider["FEATURES"]
# name of the features this function can compute
requested_scales = provider["SCALES"]
base_features_names = ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support",
"appraisal_stressfulness_period", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]
#TODO Check valid questionnaire and feature names.
# the subset of requested features this function can compute
features_to_compute = list(set(requested_features) & set(base_features_names))
esm_features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
if not esm_data.empty:
esm_data = filter_data_by_segment(esm_data, time_segment)
if not esm_data.empty:
esm_features = pd.DataFrame()
for scale in requested_scales:
questionnaire_id = QUESTIONNAIRE_IDS[scale]
mask = esm_data["questionnaire_id"] == questionnaire_id
esm_features[scale + "_mean"] = esm_data.loc[mask].groupby(["local_segment"])["esm_user_score"].mean()
#TODO Create the column esm_user_score in esm_clean. Currently, this is only done when reversing.
esm_features = esm_features.reset_index()
if 'index' in esm_features: # In calse of empty esm_features df
esm_features.rename(columns={'index': 'local_segment'}, inplace=True)
return esm_features

View File

@ -1,25 +0,0 @@
from esm_preprocess import *
from esm_JCQ import reverse_jcq_demand_control_scoring
requested_scales = snakemake.params["scales"]
df_esm = pd.read_csv(snakemake.input[0])
df_esm_preprocessed = preprocess_esm(df_esm)
if not all([scale in QUESTIONNAIRE_IDS for scale in requested_scales]):
unknown_scales = set(requested_scales) - set(QUESTIONNAIRE_IDS.keys())
print("The requested questionnaire name should be one of the following:")
print(QUESTIONNAIRE_IDS.keys())
raise ValueError("You requested scales not collected: ", unknown_scales)
df_esm_clean = clean_up_esm(df_esm_preprocessed)
df_esm_clean["esm_user_score"] = df_esm_clean["esm_user_answer_numeric"]
for scale in requested_scales:
questionnaire_id = QUESTIONNAIRE_IDS[scale]
mask = df_esm_clean["questionnaire_id"] == questionnaire_id
if scale.startswith("JCQ"):
df_esm_clean.loc[mask] = reverse_jcq_demand_control_scoring(df_esm_clean.loc[mask])
#TODO Reverse other questionnaires if needed and/or adapt esm_user_score to original scoring.
df_esm_clean.to_csv(snakemake.output[0], index=False)

View File

@ -1,260 +0,0 @@
import pandas as pd
import numpy as np
import datetime
import math, sys, yaml
from esm_preprocess import clean_up_esm
from esm import classify_sessions_by_completion_time, preprocess_esm
input_data_files = dict(snakemake.input)
def format_timestamp(x):
"""This method formates inputed timestamp into format "HH MM SS". Including spaces. If there is no hours or minutes present
that part is ignored, e.g., "MM SS" or just "SS".
Args:
x (int): unix timestamp in seconds
Returns:
str: formatted timestamp using "HH MM SS" sintax
"""
tstring=""
space = False
if x//3600 > 0:
tstring += f"{x//3600}H"
space = True
if x % 3600 // 60 > 0:
tstring += f" {x % 3600 // 60}M" if "H" in tstring else f"{x % 3600 // 60}M"
if x % 60 > 0:
tstring += f" {x % 60}S" if "M" in tstring or "H" in tstring else f"{x % 60}S"
return tstring
def extract_ers(esm_df):
"""This method has two major functionalities:
(1) It prepares STRAW event-related segments file with the use of esm file. The execution protocol is depended on
the segmenting method specified in the config.yaml file.
(2) It prepares and writes csv with targets and corresponding time segments labels. This is later used
in the overall cleaning script (straw).
Details about each segmenting method are listed below by each corresponding condition. Refer to the RAPIDS documentation for the
ERS file format: https://www.rapids.science/1.9/setup/configuration/#time-segments -> event segments
Args:
esm_df (DataFrame): read esm file that is dependend on the current participant.
Returns:
extracted_ers (DataFrame): dataframe with all necessary information to write event-related segments file
in the correct format.
"""
pd.set_option("display.max_rows", 100)
pd.set_option("display.max_columns", None)
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
pd.DataFrame(columns=["label"]).to_csv(snakemake.output[1]) # Create an empty stress_events_targets file
esm_preprocessed = clean_up_esm(preprocess_esm(esm_df))
# Take only ema_completed sessions responses
classified = classify_sessions_by_completion_time(esm_preprocessed)
esm_filtered_sessions = classified[classified["session_response"] == 'ema_completed'].reset_index()[['device_id', 'esm_session']]
esm_df = esm_preprocessed.loc[(esm_preprocessed['device_id'].isin(esm_filtered_sessions['device_id'])) & (esm_preprocessed['esm_session'].isin(esm_filtered_sessions['esm_session']))]
segmenting_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["SEGMENTING_METHOD"]
if segmenting_method in ["30_before", "90_before"]: # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
""" '30-minutes and 90-minutes before' have the same fundamental logic with couple of deviations that will be explained below.
Both take x-minute period before the questionnaire that is summed with the questionnaire duration.
All questionnaire durations over 15 minutes are excluded from the querying.
"""
# Extract time-relevant information
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # questionnaire length
extracted_ers["label"] = f"straw_event_{segmenting_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
extracted_ers[['event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].min().reset_index()[['timestamp', 'device_id']]
extracted_ers = extracted_ers[extracted_ers["timestamp"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
extracted_ers["shift_direction"] = -1
if segmenting_method == "30_before":
"""The method 30-minutes before simply takes 30 minutes before the questionnaire and sums it with the questionnaire duration.
The timestamps are formatted with the help of format_timestamp() method.
"""
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
extracted_ers["shift"] = time_before_questionnaire
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
elif segmenting_method == "90_before":
"""The method 90-minutes before has an important condition. If the time between the current and the previous questionnaire is
longer then 90 minutes it takes 90 minutes, otherwise it takes the original time difference between the questionnaires.
"""
time_before_questionnaire = 90 * 60 # in seconds (90 minutes)
extracted_ers[['end_event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].max().reset_index()[['timestamp', 'device_id']]
extracted_ers['diffs'] = extracted_ers['event_timestamp'].astype('int64') - extracted_ers['end_event_timestamp'].shift(1, fill_value=0).astype('int64')
extracted_ers.loc[extracted_ers['diffs'] > time_before_questionnaire * 1000, 'diffs'] = time_before_questionnaire * 1000
extracted_ers["diffs"] = (extracted_ers["diffs"] / 1000).apply(lambda x: math.ceil(x))
extracted_ers["length"] = (extracted_ers["timestamp"] + extracted_ers["diffs"]).apply(lambda x: format_timestamp(x))
extracted_ers["shift"] = extracted_ers["diffs"].apply(lambda x: format_timestamp(x))
elif segmenting_method == "stress_event":
"""
TODO: update documentation for this condition
This is a special case of the method as it consists of two important parts:
(1) Generating of the ERS file (same as the methods above) and
(2) Generating targets file alongside with the correct time segment labels.
This extracts event-related segments, depended on the event time and duration specified by the participant in the next
questionnaire. Additionally, 5 minutes before the specified start time of this event is taken to take into a account the
possiblity of the participant not remembering the start time percisely => this parameter can be manipulated with the variable
"time_before_event" which is defined below.
In case if the participant marked that no stressful event happened, the default of 30 minutes before the event is choosen.
In this case, se_threat and se_challenge are NaN.
By default, this method also excludes all events that are longer then 2.5 hours so that the segments are easily comparable.
"""
ioi = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["INTERVAL_OF_INTEREST"] * 60 # interval of interest in seconds
ioi_error_tolerance = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["IOI_ERROR_TOLERANCE"] * 60 # interval of interest error tolerance in seconds
# Get and join required data
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index().rename(columns={'timestamp': 'session_length'}) # questionnaire length
extracted_ers = extracted_ers[extracted_ers["session_length"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire answering is 15 min
session_start_timestamp = esm_df.groupby(['device_id', 'esm_session'])['timestamp'].min().to_frame().rename(columns={'timestamp': 'session_start_timestamp'}) # questionnaire start timestamp
session_end_timestamp = esm_df.groupby(['device_id', 'esm_session'])['timestamp'].max().to_frame().rename(columns={'timestamp': 'session_end_timestamp'}) # questionnaire end timestamp
# Users' answers for the stressfulness event (se) start times and durations
se_time = esm_df[esm_df.questionnaire_id == 90.].set_index(['device_id', 'esm_session'])['esm_user_answer'].to_frame().rename(columns={'esm_user_answer': 'se_time'})
se_duration = esm_df[esm_df.questionnaire_id == 91.].set_index(['device_id', 'esm_session'])['esm_user_answer'].to_frame().rename(columns={'esm_user_answer': 'se_duration'})
# Make se_durations to the appropriate lengths
# Extracted 3 targets that will be transfered in the csv file to the cleaning script.
se_stressfulness_event_tg = esm_df[esm_df.questionnaire_id == 87.].set_index(['device_id', 'esm_session'])['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_stressfulness_event'})
se_threat_tg = esm_df[esm_df.questionnaire_id == 88.].groupby(["device_id", "esm_session"]).mean(numeric_only=True)['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_threat'})
se_challenge_tg = esm_df[esm_df.questionnaire_id == 89.].groupby(["device_id", "esm_session"]).mean(numeric_only=True)['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_challenge'})
# All relevant features are joined by inner join to remove standalone columns (e.g., stressfulness event target has larger count)
extracted_ers = extracted_ers.join(session_start_timestamp, on=['device_id', 'esm_session'], how='inner') \
.join(session_end_timestamp, on=['device_id', 'esm_session'], how='inner') \
.join(se_stressfulness_event_tg, on=['device_id', 'esm_session'], how='inner') \
.join(se_time, on=['device_id', 'esm_session'], how='left') \
.join(se_duration, on=['device_id', 'esm_session'], how='left') \
.join(se_threat_tg, on=['device_id', 'esm_session'], how='left') \
.join(se_challenge_tg, on=['device_id', 'esm_session'], how='left')
# Filter-out the sessions that are not useful. Because of the ambiguity this excludes:
# (1) straw event times that are marked as "0 - I don't remember"
extracted_ers = extracted_ers[~extracted_ers.se_time.astype(str).str.startswith("0 - ")]
extracted_ers.reset_index(drop=True, inplace=True)
extracted_ers.loc[extracted_ers.se_duration.astype(str).str.startswith("0 - "), 'se_duration'] = 0
# Add default duration in case if participant answered that no stressful event occured
extracted_ers["se_duration"] = extracted_ers["se_duration"].fillna(int((ioi + 2*ioi_error_tolerance) * 1000))
# Prepare data to fit the data structure in the CSV file ...
# Add the event time as the end of the questionnaire if no stress event occured
extracted_ers['se_time'] = extracted_ers['se_time'].fillna(extracted_ers['session_start_timestamp'])
# Type could be an int (timestamp [ms]) which stays the same, and datetime str which is converted to timestamp in miliseconds
extracted_ers['event_timestamp'] = extracted_ers['se_time'].apply(lambda x: x if isinstance(x, int) else pd.to_datetime(x).timestamp() * 1000).astype('int64')
extracted_ers['shift_direction'] = -1
""">>>>> begin section (could be optimized) <<<<<"""
# Checks whether the duration is marked with "1 - It's still ongoing" which means that the end of the current questionnaire
# is taken as end time of the segment. Else the user input duration is taken.
extracted_ers['se_duration'] = \
np.where(
extracted_ers['se_duration'].astype(str).str.startswith("1 - "),
extracted_ers['session_end_timestamp'] - extracted_ers['event_timestamp'],
extracted_ers['se_duration']
)
# This converts the rows of timestamps in miliseconds and the rows with datetime... to timestamp in seconds.
extracted_ers['se_duration'] = \
extracted_ers['se_duration'].apply(lambda x: math.ceil(x / 1000) if isinstance(x, int) else (pd.to_datetime(x).hour * 60 + pd.to_datetime(x).minute) * 60)
# Check explicitley whether min duration is at least 0. This will eliminate rows that would be investigated after the end of the questionnaire.
extracted_ers = extracted_ers[extracted_ers['session_end_timestamp'] - extracted_ers['event_timestamp'] >= 0]
# Double check whether min se_duration is at least 0. Filter-out the rest. Negative values are considered invalid.
extracted_ers = extracted_ers[extracted_ers["se_duration"] >= 0].reset_index(drop=True)
""">>>>> end section <<<<<"""
# Simply override all durations to be of an equal amount
extracted_ers['se_duration'] = ioi + 2*ioi_error_tolerance
# If target is 0 then shift by the total stress event duration, otherwise shift it by ioi_tolerance
extracted_ers['shift'] = \
np.where(
extracted_ers['appraisal_stressfulness_event'] == 0,
extracted_ers['se_duration'],
ioi_error_tolerance
)
extracted_ers['shift'] = extracted_ers['shift'].apply(lambda x: format_timestamp(int(x)))
extracted_ers['length'] = extracted_ers['se_duration'].apply(lambda x: format_timestamp(int(x)))
# Drop event_timestamp duplicates in case in the user is referencing the same event over multiple questionnaires
extracted_ers.drop_duplicates(subset=["event_timestamp"], keep='first', inplace=True)
extracted_ers.reset_index(drop=True, inplace=True)
extracted_ers["label"] = f"straw_event_{segmenting_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
# Write the csv of extracted ERS labels with targets related to stressfulness event
extracted_ers[["label", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]].to_csv(snakemake.output[1], index=False)
else:
raise Exception("Please select correct target method for the event-related segments.")
extracted_ers = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
"""
Here the code is executed - this .py file is used both for extraction of the STRAW time_segments file for the individual
participant, and also for merging all participant's files into one combined file which is later used for the time segments
to all sensors assignment.
There are two files involved (see rules extract_event_information_from_esm and merge_event_related_segments_files in preprocessing.smk)
(1) ERS file which contains all the information about the time segment timings and
(2) targets file which has corresponding target value for the segment label which is later used to merge with other features in the cleaning script.
For more information, see the comment in the method above.
"""
if snakemake.params["stage"] == "extract":
esm_df = pd.read_csv(input_data_files['esm_raw_input'])
extracted_ers = extract_ers(esm_df)
extracted_ers.to_csv(snakemake.output[0], index=False)
elif snakemake.params["stage"] == "merge":
input_data_files = dict(snakemake.input)
straw_events = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
stress_events_targets = pd.DataFrame(columns=["label", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"])
for input_file in input_data_files["ers_files"]:
ers_df = pd.read_csv(input_file)
straw_events = pd.concat([straw_events, ers_df], axis=0, ignore_index=True)
straw_events.to_csv(snakemake.output[0], index=False)
for input_file in input_data_files["se_files"]:
se_df = pd.read_csv(input_file)
stress_events_targets = pd.concat([stress_events_targets, se_df], axis=0, ignore_index=True)
stress_events_targets.to_csv(snakemake.output[1], index=False)

View File

@ -59,7 +59,6 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
if "totalkeyboardtouches" in features_to_compute:
keyboard_features["totalkeyboardtouches"] = keyboard_data.groupby(['local_segment','sessionNumber'])['is_password'].count().reset_index().groupby(['local_segment'])['is_password'].mean()
keyboard_features.fillna(value={"sessioncount": 0, "averagesessionlength": 0, "changeintextlengthlessthanminusone": 0, "changeintextlengthequaltominusone": 0, "changeintextlengthequaltoone": 0, "changeintextlengthmorethanone": 0, "maxtextlength": 0, "totalkeyboardtouches": 0}, inplace=True)
keyboard_features = keyboard_features.reset_index()
return keyboard_features

View File

@ -29,7 +29,7 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
if "medianlux" in features_to_compute:
light_features["medianlux"] = light_data.groupby(["local_segment"])["double_light_lux"].median()
if "stdlux" in features_to_compute:
light_features["stdlux"] = light_data.groupby(["local_segment"])["double_light_lux"].std().fillna(0)
light_features["stdlux"] = light_data.groupby(["local_segment"])["double_light_lux"].std()
light_features = light_features.reset_index()

View File

@ -25,11 +25,9 @@ barnett_daily_features <- function(snakemake){
datetime_end_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2} 23:59:59"
location <- location %>%
mutate(is_daily = str_detect(assigned_segments, paste0(".*#", datetime_start_regex, ",", datetime_end_regex, ".*")))
does_not_span = nrow(segment_labels) == 0 || nrow(location) == 0 || all(location$is_daily == FALSE) || (max(location$timestamp) - min(location$timestamp) < 86400000)
if(is.na(does_not_span) || does_not_span){
warning("Barnett's location features cannot be computed for data or time segments that do not span one or more entire days (00:00:00 to 23:59:59). Values below point to the problem:",
if(nrow(segment_labels) == 0 || nrow(location) == 0 || all(location$is_daily == FALSE) || (max(location$timestamp) - min(location$timestamp) < 86400000)){
warning("Barnett's location features cannot be computed for data or time segments that do not span one or more entire days (00:00:00 to 23:59:59). Values below point to the problem:",
"\nLocation data rows within a daily time segment: ", nrow(filter(location, is_daily)),
"\nLocation data time span in days: ", round((max(location$timestamp) - min(location$timestamp)) / 86400000, 2)
)

View File

@ -115,7 +115,7 @@ cluster_on = provider["CLUSTER_ON"]
strategy = provider["INFER_HOME_LOCATION_STRATEGY"]
days_threshold = provider["MINIMUM_DAYS_TO_DETECT_HOME_CHANGES"]
if not location_data.timestamp.is_monotonic_increasing:
if not location_data.timestamp.is_monotonic:
location_data.sort_values(by=["timestamp"], inplace=True)
location_data["duration_in_seconds"] = -1 * location_data.timestamp.diff(-1) / 1000

View File

@ -37,8 +37,7 @@ def variance_and_logvariance_features(location_data, location_features):
location_data["longitude_for_wvar"] = (location_data["double_longitude"] - location_data["longitude_wavg"]) ** 2 * location_data["duration"] * 60
location_features["locationvariance"] = ((location_data_grouped["latitude_for_wvar"].sum() + location_data_grouped["longitude_for_wvar"].sum()) / (location_data_grouped["duration"].sum() * 60 - 1)).fillna(0)
location_features["loglocationvariance"] = np.log10(location_features["locationvariance"]).replace(-np.inf, -1000000)
location_features["loglocationvariance"] = np.log10(location_features["locationvariance"]).replace(-np.inf, np.nan)
return location_features
@ -181,11 +180,8 @@ def doryab_features(sensor_data_files, time_segment, provider, filter_data_by_se
location_features = location_features.merge(location_entropy(stationary_data_without_outliers), how="outer", left_index=True, right_index=True)
# time at home
if stationary_data.empty:
location_features["timeathome"] = 0
else:
stationary_data["time_at_home"] = stationary_data.apply(lambda row: row["duration"] if row["distance_from_home"] <= radius_from_home else 0, axis=1)
location_features["timeathome"] = stationary_data[["local_segment", "time_at_home"]].groupby(["local_segment"])["time_at_home"].sum()
stationary_data["time_at_home"] = stationary_data.apply(lambda row: row["duration"] if row["distance_from_home"] <= radius_from_home else 0, axis=1)
location_features["timeathome"] = stationary_data[["local_segment", "time_at_home"]].groupby(["local_segment"])["time_at_home"].sum()
# home label
location_features["homelabel"] = stationary_data[["local_segment", "home_label"]].groupby(["local_segment"]).agg(lambda x: pd.Series.mode(x)[0])

View File

@ -65,15 +65,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
features <- message_features_of_type(messages_of_type, message_type, time_segment, requested_features)
messages_features <- merge(messages_features, features, all=TRUE)
}
# Fill seleted columns with a high number
time_cols <- select(messages_features, contains("timefirstmessages") | contains("timelastmessages")) %>%
colnames(.)
messages_features <- messages_features %>%
mutate_at(., time_cols, ~replace(., is.na(.), 1500))
# Fill NA values with 0
messages_features <- messages_features %>% mutate_all(~replace(., is.na(.), 0))
messages_features <- messages_features %>% mutate_at(vars(contains("countmostfrequentcontact") | contains("distinctcontacts") | contains("count")), list( ~ replace_na(., 0)))
return(messages_features)
}

View File

@ -15,7 +15,7 @@ def getEpisodeDurationFeatures(screen_data, time_segment, episode, features, ref
if "avgduration" in features:
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].mean().rename(columns = {"duration":"avgduration" + episode})], axis = 1)
if "stdduration" in features:
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].std().fillna(0).rename(columns = {"duration":"stdduration" + episode})], axis = 1)
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].std().rename(columns = {"duration":"stdduration" + episode})], axis = 1)
if "firstuseafter" + "{0:0=2d}".format(reference_hour_first_use) in features:
screen_data_episode_after_hour = screen_data_episode.copy()
screen_data_episode_after_hour["hour"] = pd.to_datetime(screen_data_episode["local_start_date_time"]).dt.hour
@ -62,7 +62,6 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
screen_features = pd.concat([screen_features, getEpisodeDurationFeatures(screen_data, time_segment, episode, features_episodes_to_compute, reference_hour_first_use)], axis=1)
if not screen_features.empty:
screen_features.fillna(value={feature_name: 0 for feature_name in screen_features.columns if not feature_name.startswith(("stdduration", "firstuseafter"))}, inplace=True)
screen_features = screen_features.reset_index()
return screen_features

View File

@ -1,30 +0,0 @@
import pandas as pd
def straw_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
speech_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_features = provider["FEATURES"]
# name of the features this function can compute+
base_features_names = ["meanspeech", "stdspeech", "nlargest", "nsmallest", "medianspeech"]
features_to_compute = list(set(requested_features) & set(base_features_names))
speech_features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
if not speech_data.empty:
speech_data = filter_data_by_segment(speech_data, time_segment)
if not speech_data.empty:
speech_features = pd.DataFrame()
if "meanspeech" in features_to_compute:
speech_features["meanspeech"] = speech_data.groupby(["local_segment"])['speech_proportion'].mean()
if "stdspeech" in features_to_compute:
speech_features["stdspeech"] = speech_data.groupby(["local_segment"])['speech_proportion'].std()
if "nlargest" in features_to_compute:
speech_features["nlargest"] = speech_data.groupby(["local_segment"])['speech_proportion'].apply(lambda x: x.nlargest(5).mean())
if "nsmallest" in features_to_compute:
speech_features["nsmallest"] = speech_data.groupby(["local_segment"])['speech_proportion'].apply(lambda x: x.nsmallest(5).mean())
if "medianspeech" in features_to_compute:
speech_features["medianspeech"] = speech_data.groupby(["local_segment"])['speech_proportion'].median()
speech_features = speech_features.reset_index()
return speech_features

View File

@ -9,26 +9,21 @@ compute_wifi_feature <- function(data, feature, time_segment){
"countscans" = data %>% summarise(!!feature := n()),
"uniquedevices" = data %>% summarise(!!feature := n_distinct(bssid)))
return(data)
} else if(feature == "countscansmostuniquedevice"){
# Get the most scanned device
mostuniquedevice <- data %>%
filter(bssid != "") %>%
mostuniquedevice <- data %>%
group_by(bssid) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N)) %>%
head(1) %>% # if there are multiple device with the same amount of scans pick the first one only
pull(bssid)
data <- data %>% filter_data_by_segment(time_segment)
return(data %>%
filter(bssid == mostuniquedevice) %>%
group_by(local_segment) %>%
summarise(!!feature := n())
)
summarise(!!feature := n()) %>%
replace(is.na(.), 0))
}
}
@ -48,6 +43,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
feature <- compute_wifi_feature(wifi_data, feature_name, time_segment)
features <- merge(features, feature, by="local_segment", all = TRUE)
}
features <- features %>% mutate_all(~replace(., is.na(.), 0))
return(features)
}

View File

@ -1,17 +0,0 @@
source("renv/activate.R")
library(tidyr)
library(purrr)
library("dplyr", warn.conflicts = F)
library(stringr)
feature_files <- snakemake@input[["feature_files"]]
features_of_all_participants <- tibble(filename = feature_files) %>% # create a data frame
mutate(file_contents = map(filename, ~ read.csv(., stringsAsFactors = F, colClasses = c(local_segment = "character", local_segment_label = "character", local_segment_start_datetime="character", local_segment_end_datetime="character"))),
pid = str_match(filename, ".*/(.*)/z_all_sensor_features.csv")[,2]) %>%
unnest(cols = c(file_contents)) %>%
select(-filename)
write.csv(features_of_all_participants, snakemake@output[[1]], row.names = FALSE)

View File

@ -83,14 +83,4 @@ fetch_provider_features <- function(provider, provider_key, sensor_key, sensor_d
"(.*)#(.*),(.*)",
remove = FALSE)
return(sensor_features)
}
run_provider_cleaning_script <- function(provider, provider_key, sensor_key, sensor_data_files){
source(provider[["SRC_SCRIPT"]])
print(paste(rapids_log_tag, "Processing", sensor_key, provider_key))
cleaning_function <- match.fun(paste0(tolower(provider_key), "_cleaning"))
sensor_features <- cleaning_function(sensor_data_files, provider)
return(sensor_features)
}
}

View File

@ -88,13 +88,11 @@ def chunk_episodes(sensor_episodes):
return merged_sensor_episodes
def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=False):
def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file):
import pandas as pd
from importlib import import_module, util
sensor_features = pd.DataFrame(columns=["local_segment"])
sensor_fo_features = pd.DataFrame(columns=["local_segment"])
sensor_so_features = pd.DataFrame(columns=["local_segment"])
time_segments_labels = pd.read_csv(time_segments_file, header=0)
if "FEATURES" not in provider:
raise ValueError("Provider config[{}][PROVIDERS][{}] is missing a FEATURES attribute in config.yaml".format(sensor_key.upper(), provider_key.upper()))
@ -108,68 +106,20 @@ def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_file
time_segments_labels["label"] = [""]
for time_segment in time_segments_labels["label"]:
print("{} Processing {} {} {}".format(rapids_log_tag, sensor_key, provider_key, time_segment))
features = feature_function(sensor_data_files, time_segment, provider, filter_data_by_segment=filter_data_by_segment, chunk_episodes=chunk_episodes, calc_windows=calc_windows)
# In case of calc_window = True
if isinstance(features, tuple):
if not "local_segment" in features[0].columns or not "local_segment" in features[1].columns:
raise ValueError("The dataframe returned by the " + sensor_key + " provider '" + provider_key + "' is missing the 'local_segment' column added by the 'filter_data_by_segment()' function. Check the provider script is using such function and is not removing 'local_segment' by accident (" + provider["SRC_SCRIPT"] + ")\n The 'local_segment' column is used to index a provider's features (each row corresponds to a different time segment instance (e.g. 2020-01-01, 2020-01-02, 2020-01-03, etc.)")
features[0].columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features[0].columns]
features[1].columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features[1].columns]
if not features[0].empty:
sensor_fo_features = pd.concat([sensor_fo_features, features[0]], axis=0, sort=False)
if not features[1].empty:
sensor_so_features = pd.concat([sensor_so_features, features[1]], axis=0, sort=False)
else:
if not "local_segment" in features.columns:
raise ValueError("The dataframe returned by the " + sensor_key + " provider '" + provider_key + "' is missing the 'local_segment' column added by the 'filter_data_by_segment()' function. Check the provider script is using such function and is not removing 'local_segment' by accident (" + provider["SRC_SCRIPT"] + ")\n The 'local_segment' column is used to index a provider's features (each row corresponds to a different time segment instance (e.g. 2020-01-01, 2020-01-02, 2020-01-03, etc.)")
features.columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features.columns]
sensor_features = pd.concat([sensor_features, features], axis=0, sort=False)
features = feature_function(sensor_data_files, time_segment, provider, filter_data_by_segment=filter_data_by_segment, chunk_episodes=chunk_episodes)
if not "local_segment" in features.columns:
raise ValueError("The dataframe returned by the " + sensor_key + " provider '" + provider_key + "' is missing the 'local_segment' column added by the 'filter_data_by_segment()' function. Check the provider script is using such function and is not removing 'local_segment' by accident (" + provider["SRC_SCRIPT"] + ")\n The 'local_segment' column is used to index a provider's features (each row corresponds to a different time segment instance (e.g. 2020-01-01, 2020-01-02, 2020-01-03, etc.)")
features.columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features.columns]
sensor_features = pd.concat([sensor_features, features], axis=0, sort=False)
else:
for feature in provider["FEATURES"]:
sensor_features[feature] = None
if calc_windows:
segment_colums = pd.DataFrame()
sensor_fo_features['local_segment'] = sensor_fo_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_fo_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_fo_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
segment_colums = pd.DataFrame()
sensor_so_features['local_segment'] = sensor_so_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_so_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_so_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
segment_colums = pd.DataFrame()
sensor_features['local_segment'] = sensor_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
return sensor_fo_features, sensor_so_features
else:
segment_colums = pd.DataFrame()
sensor_features['local_segment'] = sensor_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
return sensor_features
def run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files, target=False):
from importlib import import_module, util
print("{} Processing {} {}".format(rapids_log_tag, sensor_key, provider_key))
cleaning_module = import_path(provider["SRC_SCRIPT"])
cleaning_function = getattr(cleaning_module, provider_key.lower() + "_cleaning")
if target:
sensor_features = cleaning_function(sensor_data_files, provider, target)
else:
sensor_features = cleaning_function(sensor_data_files, provider)
return sensor_features
return sensor_features

View File

@ -1,19 +0,0 @@
import pandas as pd
import sys
import warnings
def retain_target_column(df_input: pd.DataFrame, target_variable_name: str):
column_names = df_input.columns
esm_names_index = column_names.str.startswith("phone_esm_straw")
# Find all columns coming from phone_esm, since these are not features for our purposes and we will drop them.
esm_names = column_names[esm_names_index]
target_variable_index = esm_names.str.contains(target_variable_name)
if all(~target_variable_index):
warnings.warn(f"The requested target (, {target_variable_name} ,)cannot be found in the dataset. Please check the names of phone_esm_ columns in cleaned python file")
return None
sensor_features_plus_target = df_input.drop(esm_names, axis=1)
sensor_features_plus_target["target"] = df_input[esm_names[target_variable_index]]
# We will only keep one column related to phone_esm and that will be our target variable.
# Add it back to the very and of the data frame and rename it to target.
return sensor_features_plus_target

View File

@ -1,24 +0,0 @@
import pandas as pd
from helper import retain_target_column
sensor_features = pd.read_csv(snakemake.input["cleaned_sensor_features"])
all_baseline_features = pd.DataFrame()
for baseline_features_path in snakemake.input["demographic_features"]:
pid = baseline_features_path.split("/")[3]
baseline_features = pd.read_csv(baseline_features_path)
baseline_features = baseline_features.assign(pid=pid)
all_baseline_features = pd.concat([all_baseline_features, baseline_features], axis=0)
# merge sensor features and baseline features
if not sensor_features.empty:
features = sensor_features.merge(all_baseline_features, on="pid", how="left")
target_variable_name = snakemake.params["target_variable"]
model_input = retain_target_column(features, target_variable_name)
model_input.to_csv(snakemake.output[0], index=False)
else:
sensor_features.to_csv(snakemake.output[0], index=False)

Some files were not shown because too many files have changed in this diff Show More