Compare commits

...

1 Commits

Author SHA1 Message Date
JulioV 09ca9725c0 Implemented by @adisb01 new plugin sentimental features 2021-03-05 11:04:11 -05:00
4 changed files with 158 additions and 0 deletions

View File

@ -218,6 +218,15 @@ for provider in config["PHONE_LOCATIONS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["PHONE_PLUGIN_SENTIMENTAL"]["PROVIDERS"].keys():
if config["PHONE_PLUGIN_SENTIMENTAL"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/phone_plugin_sentimental_raw.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/phone_plugin_sentimental_with_datetime.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_plugin_sentimental_features/phone_plugin_sentimental_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["PHONE_PLUGIN_SENTIMENTAL"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_plugin_sentimental.csv", pid=config["PIDS"],))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["FITBIT_DATA_YIELD"]["PROVIDERS"].keys():
if config["FITBIT_DATA_YIELD"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_intraday_raw.csv", pid=config["PIDS"]))

View File

@ -282,6 +282,15 @@ PHONE_MESSAGES:
SRC_LANGUAGE: "r"
SRC_FOLDER: "rapids" # inside src/features/phone_messages
PHONE_PLUGIN_SENTIMENTAL:
TABLE: plugin_sentimental_study_data
PROVIDERS:
WWBP:
COMPUTE: False
FEATURES: []
SRC_FOLDER: "wwbp"
SRC_LANGUAGE: "python"
# See https://www.rapids.science/latest/features/phone-screen/
PHONE_SCREEN:
TABLE: screen

View File

@ -418,6 +418,32 @@ rule phone_messages_r_features:
script:
"../src/features/entry.R"
rule phone_plugin_sentimental_python_features:
input:
sensor_data = "data/raw/{pid}/phone_plugin_sentimental_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
params:
provider = lambda wildcards: config["PHONE_PLUGIN_SENTIMENTAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "phone_plugin_sentimental"
output:
"data/interim/{pid}/phone_plugin_sentimental_features/phone_plugin_sentimental_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule phone_plugin_sentimental_r_features:
input:
sensor_data = "data/raw/{pid}/plugin_sentimental_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
params:
provider = lambda wildcards: config["PHONE_PLUGIN_SENTIMENTAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "phone_plugin_sentimental"
output:
"data/interim/{pid}/phone_plugin_sentimental_features/phone_plugin_sentimental_r_{provider_key}.csv"
script:
"../src/features/entry.R"
rule screen_episodes:
input:
screen = "data/raw/{pid}/phone_screen_with_datetime_unified.csv"

View File

@ -0,0 +1,114 @@
import pandas as pd
import numpy as np
def wwbp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
sentiment_data = pd.read_csv(sensor_data_files["sensor_data"])
sentiment_features = pd.DataFrame(columns=["local_segment"])
# Get relevant information about provided features
app_included = "app" in provider["FEATURES"]
if not sentiment_data.empty:
sentiment_data = filter_data_by_segment(sentiment_data, time_segment)
if not sentiment_data.empty:
# Split the data into groups by time segment
segments = sentiment_data.groupby("local_segment")
time_segments = []
# Get all tuples of app_category features to calculate
if app_included:
small_df = sentiment_data.drop(sentiment_data.columns.difference(['app_name', 'word_category']), axis=1)
tuples = list(small_df.groupby(['app_name', 'word_category']).groups)
categories = list(filter(lambda x : x[1] != 'total_words' and x[1]==x[1], tuples))
# Get all word categories features to calculate
else:
categories = sentiment_data.word_category.unique().tolist()
categories.remove('total_words')
# Aggregate each segment data into a single instance
for _, segment_df in segments:
instance = process_local_segment(segment_df, categories, app_included)
time_segments.append(instance)
# Combine the data into a final dataframe
sentiment_features = pd.concat(time_segments)
return sentiment_features
# Handles local segment logic and processing
def process_local_segment(df, categories, app_included):
if not app_included:
# Simply add the relevant features
features_df = insert_features(df, categories, False)
else:
# Get the features for each app-category combination
app_groups = df.groupby(['app_name'])
processed = []
for _, group in app_groups:
p = insert_features(group, categories, True)
processed.append(p)
# Combine the data into one instance
features_df = pd.concat(processed).groupby(['local_segment'], as_index = False).sum()
# Add the device_id column and return the data
features_df['device_id'] = df['device_id'].values[0]
return features_df
# Calculates features in a particular local segment
def insert_features(df, categories, app_included=False):
app = df['app_name'].values[0]
# Map each word_category to its score
category_to_score = {}
totals_df = pd.DataFrame()
totals_df['score'] = df.groupby(["word_category"])['double_sentiment_score'].sum()
for index, row in totals_df.iterrows():
category_to_score[index] = row['score']
# Get the total number of words in the time segment
total_words = category_to_score['total_words']
category_to_score.pop('total_words')
# Populate data with the available scores otherwise fill in 0
data = {}
for c in categories:
# c is a tuple (app, word_category)
if app_included:
tuple_app = c[0]
tuple_cat = c[1]
# Calculate the normalized score if c present
feature = tuple_cat + "_" + tuple_app
if tuple_app == app and tuple_cat in category_to_score:
data[feature] = category_to_score[tuple_cat] / total_words
else:
data[feature] = 0
# c is just a word_category
else:
# Calculate the normalized score if c is present
feature = c
if c in category_to_score:
data[feature] = category_to_score[c] / total_words
else:
data[feature] = 0
# Create a dataframe from the data
data['local_segment'] = df['local_segment'].values[0]
processed_df = pd.DataFrame([data])
return processed_df