Preparation for cleaning & imputation
parent
a620def209
commit
f78aa3e7b3
|
@ -551,9 +551,6 @@ if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
|
||||||
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
||||||
|
|
||||||
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
|
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
|
||||||
# Put the for loop over STANDARDIZATION providers if all are COMPUTE == True
|
|
||||||
# then merge all that are set to True in z_all_sensors for all and each participant
|
|
||||||
# See the logic behind: in each sensor the "data/processed/features/all_participants/all_sensor_features.csv" is listed
|
|
||||||
|
|
||||||
rule all:
|
rule all:
|
||||||
input:
|
input:
|
||||||
|
|
|
@ -1135,7 +1135,7 @@ rule clean_standardized_sensor_features_for_individual_participants:
|
||||||
script_extension = "{script_extension}",
|
script_extension = "{script_extension}",
|
||||||
sensor_key = "all_cleaning_individual"
|
sensor_key = "all_cleaning_individual"
|
||||||
output:
|
output:
|
||||||
"data/processed/features/{pid}/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv" # bo predstavljalo probleme za naprej (kako iskati datoteke + standardizacija itd.)
|
"data/processed/features/{pid}/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
|
||||||
script:
|
script:
|
||||||
"../src/features/entry.{params.script_extension}"
|
"../src/features/entry.{params.script_extension}"
|
||||||
|
|
||||||
|
|
|
@ -30,7 +30,7 @@ rule baseline_features:
|
||||||
|
|
||||||
rule select_target:
|
rule select_target:
|
||||||
input:
|
input:
|
||||||
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_rapids_R.csv"
|
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_straw_py.csv"
|
||||||
params:
|
params:
|
||||||
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||||
output:
|
output:
|
||||||
|
@ -40,7 +40,7 @@ rule select_target:
|
||||||
|
|
||||||
rule merge_features_and_targets_for_population_model:
|
rule merge_features_and_targets_for_population_model:
|
||||||
input:
|
input:
|
||||||
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_rapids_R.csv",
|
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_straw_py.csv",
|
||||||
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
||||||
params:
|
params:
|
||||||
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||||
|
@ -51,7 +51,7 @@ rule merge_features_and_targets_for_population_model:
|
||||||
|
|
||||||
# rule select_target:
|
# rule select_target:
|
||||||
# input:
|
# input:
|
||||||
# cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_rapids_R.csv"
|
# cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
|
||||||
# params:
|
# params:
|
||||||
# target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
# target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||||
# output:
|
# output:
|
||||||
|
@ -61,7 +61,7 @@ rule merge_features_and_targets_for_population_model:
|
||||||
|
|
||||||
# rule merge_features_and_targets_for_population_model:
|
# rule merge_features_and_targets_for_population_model:
|
||||||
# input:
|
# input:
|
||||||
# cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_rapids_R.csv",
|
# cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py.csv",
|
||||||
# demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
# demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
||||||
# params:
|
# params:
|
||||||
# target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
# target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||||
|
|
|
@ -10,7 +10,7 @@ def retain_target_column(df_input: pd.DataFrame, target_variable_name: str):
|
||||||
if all(~target_variable_index):
|
if all(~target_variable_index):
|
||||||
raise ValueError("The requested target (", target_variable_name,
|
raise ValueError("The requested target (", target_variable_name,
|
||||||
")cannot be found in the dataset.",
|
")cannot be found in the dataset.",
|
||||||
"Please check the names of phone_esm_ columns in all_sensor_features_cleaned_rapids_R.csv")
|
"Please check the names of phone_esm_ columns in z_all_sensor_features_cleaned_straw_py.csv")
|
||||||
sensor_features_plus_target = df_input.drop(esm_names, axis=1)
|
sensor_features_plus_target = df_input.drop(esm_names, axis=1)
|
||||||
sensor_features_plus_target["target"] = df_input[esm_names[target_variable_index]]
|
sensor_features_plus_target["target"] = df_input[esm_names[target_variable_index]]
|
||||||
# We will only keep one column related to phone_esm and that will be our target variable.
|
# We will only keep one column related to phone_esm and that will be our target variable.
|
||||||
|
|
Loading…
Reference in New Issue