Fixed bluetooth bug and added feeature testing

pull/95/head
kaguillera 2020-07-06 18:11:28 -04:00
parent 61e86dd82b
commit f24d2876fc
29 changed files with 97 additions and 11 deletions

View File

@ -18,7 +18,7 @@ Messages (SMS)
- The second day's data contains 6 records for each of only 2 ``epoch`` (currently ``morning`` and ``evening``)
- The raw message data contains records for both ``message_types`` (i.e. ``recieved`` and ``sent``) in both days in all epochs. The number records with each ``message_types`` per epoch is randomly distributed There is at least one records with each ``message_types`` per epoch.
- There is one raw message data file each, as described above, for testing both iOS and Android data.
- There is also an additional for both android and iOS that contains no raw input data for testing empty data files
- There is also an additional empty data file for both android and iOS for testing empty data files
Calls
"""""""
@ -30,7 +30,7 @@ Calls
- The second day's data contains 6 records for each of only 2 ``epoch`` (currently ``morning`` and ``evening``)
- The call data contains records for all ``call_types`` (i.e. ``incoming``, ``outgoing`` and ``missed``) in both days in all epochs. The number records with each of the ``call_types`` per epoch is randomly distributed. There is at least one records with each ``call_types`` per epoch.
- There is one call data file each, as described above, for testing both iOS and Android data.
- There is also an additional for both android and iOS that contains no raw input data for testing empty data files
- There is also an additional empty data file for both android and iOS for testing empty data files
Screen
""""""""
@ -42,7 +42,7 @@ Screen
- The screen delta data contains 1 record to represent an ``unlock`` episode that falls across the boundary of 2 epochs. Namely the ``unlock`` episode starts in one epoch and ends in the next, thus there is a record for ``unlock`` episodes that fall across ``night`` to ``morning``, ``morning`` to ``afternoon`` and finally ``afternoon`` to ``night``
- The testing is done for ``unlock`` episode_type.
- There is one screen data file each for testing both iOS and Android data formats.
- There is also an additional for both android and iOS that contains no raw input data for testing empty data files
- There is also an additional empty data file for both android and iOS for testing empty data files
Battery
"""""""""
@ -53,5 +53,13 @@ Battery
- The battery delta data contains 1 record each for a ``charging`` and ``discharging`` episode that falls within an ``epoch`` for every ``epoch``. Thus for the ``daily`` epoch there would be multiple ``charging`` and ``discharging`` episodes
- Since either a ``charging`` episode or a ``discharging`` episode and not both can occur across epochs, in order to test epsiodes that occur across epochs alternating episodes of ``charging`` and ``discharging`` episodes that fall across ``night`` to ``morning``, ``morning`` to ``afternoon`` and finally ``afternoon`` to ``night`` are present in the battery delta data. This starts with a ``discharging`` episode that begins in ``night`` and end in ``morning``.
- There is one battery data file each, for testing both iOS and Android data formats.
- There is also an additional for both android and iOS that contains no raw input data for testing empty data files
- There is also an additional empty data file for both android and iOS for testing empty data files
Bluetooth
""""""""""
- The raw bluetooth data file contains data for 1 day.
- The raw bluetooth data contains at least 2 records for each ``epoch``.
- An option of 5 bluetooth devices are randomly distributed throughout the data records.
- There is one raw bluetooth data file each, for testing both iOS and Android data formats.
- There is also an additional empty data file for both android and iOS for testing empty data files

View File

@ -9,21 +9,26 @@ filter_by_day_segment <- function(data, day_segment) {
}
compute_bluetooth_feature <- function(data, feature, day_segment){
data <- data %>% filter_by_day_segment(day_segment)
if(feature %in% c("countscans", "uniquedevices")){
data <- data %>% filter_by_day_segment(day_segment)
data <- switch(feature,
"countscans" = data %>% summarise(!!paste("bluetooth", day_segment, feature, sep = "_") := n()),
"uniquedevices" = data %>% summarise(!!paste("bluetooth", day_segment, feature, sep = "_") := n_distinct(bt_address)))
return(data)
} else if(feature == "countscansmostuniquedevice"){
# Get the most scanned device
data <- data %>% group_by(bt_address) %>%
mostuniquedevice <- data %>%
group_by(bt_address) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N))
filter(N == max(N)) %>%
head(1) %>% # if there are multiple device with the same amount of scans pick the first one only
pull(bt_address)
return(data %>%
filter_by_day_segment(day_segment) %>%
summarise(!!paste("bluetooth", day_segment, feature, sep = "_") := n()))
filter(bt_address == mostuniquedevice) %>%
group_by(local_date) %>%
summarise(!!paste("bluetooth", day_segment, feature, sep = "_") := n()) %>%
replace(is.na(.), 0))
}
}

View File

@ -37,6 +37,11 @@ if config["BATTERY"]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/{pid}/battery_deltas.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/{pid}/battery_{day_segment}.csv", pid = config["PIDS"], day_segment = config["BATTERY"]["DAY_SEGMENTS"]))
if config["BLUETOOTH"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BLUETOOTH"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["BLUETOOTH"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/bluetooth_{segment}.csv", pid=config["PIDS"], segment = config["BLUETOOTH"]["DAY_SEGMENTS"]))
rule all:
input:
files_to_compute

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_afternoon_countscans","bluetooth_afternoon_uniquedevices","bluetooth_afternoon_countscansmostuniquedevice"
"2020-07-02",2,2,1
1 local_date bluetooth_afternoon_countscans bluetooth_afternoon_uniquedevices bluetooth_afternoon_countscansmostuniquedevice
2 2020-07-02 2 2 1

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_daily_countscans","bluetooth_daily_uniquedevices","bluetooth_daily_countscansmostuniquedevice"
"2020-07-02",14,5,4
1 local_date bluetooth_daily_countscans bluetooth_daily_uniquedevices bluetooth_daily_countscansmostuniquedevice
2 2020-07-02 14 5 4

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_evening_countscans","bluetooth_evening_uniquedevices","bluetooth_evening_countscansmostuniquedevice"
"2020-07-02",5,4,2
1 local_date bluetooth_evening_countscans bluetooth_evening_uniquedevices bluetooth_evening_countscansmostuniquedevice
2 2020-07-02 5 4 2

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_morning_countscans","bluetooth_morning_uniquedevices","bluetooth_morning_countscansmostuniquedevice"
"2020-07-02",3,2,2
1 local_date bluetooth_morning_countscans bluetooth_morning_uniquedevices bluetooth_morning_countscansmostuniquedevice
2 2020-07-02 3 2 2

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_night_countscans","bluetooth_night_uniquedevices","bluetooth_night_countscansmostuniquedevice"
"2020-07-02",4,4,1
1 local_date bluetooth_night_countscans bluetooth_night_uniquedevices bluetooth_night_countscansmostuniquedevice
2 2020-07-02 4 4 1

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_afternoon_countscans","bluetooth_afternoon_uniquedevices","bluetooth_afternoon_countscansmostuniquedevice"
"2020-07-02",2,2,1
1 local_date bluetooth_afternoon_countscans bluetooth_afternoon_uniquedevices bluetooth_afternoon_countscansmostuniquedevice
2 2020-07-02 2 2 1

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_daily_countscans","bluetooth_daily_uniquedevices","bluetooth_daily_countscansmostuniquedevice"
"2020-07-02",14,5,5
1 local_date bluetooth_daily_countscans bluetooth_daily_uniquedevices bluetooth_daily_countscansmostuniquedevice
2 2020-07-02 14 5 5

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_evening_countscans","bluetooth_evening_uniquedevices","bluetooth_evening_countscansmostuniquedevice"
"2020-07-02",5,3,3
1 local_date bluetooth_evening_countscans bluetooth_evening_uniquedevices bluetooth_evening_countscansmostuniquedevice
2 2020-07-02 5 3 3

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_morning_countscans","bluetooth_morning_uniquedevices","bluetooth_morning_countscansmostuniquedevice"
"2020-07-02",3,3,1
1 local_date bluetooth_morning_countscans bluetooth_morning_uniquedevices bluetooth_morning_countscansmostuniquedevice
2 2020-07-02 3 3 1

View File

@ -0,0 +1,2 @@
"local_date","bluetooth_night_countscans","bluetooth_night_uniquedevices","bluetooth_night_countscansmostuniquedevice"
"2020-07-02",4,2,2
1 local_date bluetooth_night_countscans bluetooth_night_uniquedevices bluetooth_night_countscansmostuniquedevice
2 2020-07-02 4 2 2

View File

@ -0,0 +1 @@
"local_date","bluetooth_afternoon_countscans","bluetooth_afternoon_uniquedevices","bluetooth_afternoon_countscansmostuniquedevice"
1 local_date bluetooth_afternoon_countscans bluetooth_afternoon_uniquedevices bluetooth_afternoon_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_daily_countscans","bluetooth_daily_uniquedevices","bluetooth_daily_countscansmostuniquedevice"
1 local_date bluetooth_daily_countscans bluetooth_daily_uniquedevices bluetooth_daily_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_evening_countscans","bluetooth_evening_uniquedevices","bluetooth_evening_countscansmostuniquedevice"
1 local_date bluetooth_evening_countscans bluetooth_evening_uniquedevices bluetooth_evening_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_morning_countscans","bluetooth_morning_uniquedevices","bluetooth_morning_countscansmostuniquedevice"
1 local_date bluetooth_morning_countscans bluetooth_morning_uniquedevices bluetooth_morning_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_night_countscans","bluetooth_night_uniquedevices","bluetooth_night_countscansmostuniquedevice"
1 local_date bluetooth_night_countscans bluetooth_night_uniquedevices bluetooth_night_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_afternoon_countscans","bluetooth_afternoon_uniquedevices","bluetooth_afternoon_countscansmostuniquedevice"
1 local_date bluetooth_afternoon_countscans bluetooth_afternoon_uniquedevices bluetooth_afternoon_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_daily_countscans","bluetooth_daily_uniquedevices","bluetooth_daily_countscansmostuniquedevice"
1 local_date bluetooth_daily_countscans bluetooth_daily_uniquedevices bluetooth_daily_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_evening_countscans","bluetooth_evening_uniquedevices","bluetooth_evening_countscansmostuniquedevice"
1 local_date bluetooth_evening_countscans bluetooth_evening_uniquedevices bluetooth_evening_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_morning_countscans","bluetooth_morning_uniquedevices","bluetooth_morning_countscansmostuniquedevice"
1 local_date bluetooth_morning_countscans bluetooth_morning_uniquedevices bluetooth_morning_countscansmostuniquedevice

View File

@ -0,0 +1 @@
"local_date","bluetooth_night_countscans","bluetooth_night_uniquedevices","bluetooth_night_countscansmostuniquedevice"
1 local_date bluetooth_night_countscans bluetooth_night_uniquedevices bluetooth_night_countscansmostuniquedevice

View File

@ -0,0 +1,15 @@
timestamp,device_id,bt_address,bt_name,bt_rssi,label
1593684000123,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,A6:93:AF:8C:36,Phone,-92,1593684000123
1593705599321,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,A6:93:AF:8C:36,Phone,-79,1593684000123
1593687638456,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,7E:D1:4E:80:2B,,-96,1593684000123
1593705600654,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,7E:D1:4E:80:2B,,-92,1593705600654
1593727199546,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,4B:2C:AA:88:1B,Smart TV,-95,1593705600654
1593727200564,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,F5:F6:EC:8D:6C,Laptop,-88,1593727200564
1593748799465,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,A6:93:AF:8C:36,Phone,-91,1593727200564
1593738619645,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,10:6F:61:E4:A9,Speakers,-90,1593727200564
1593747525789,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,7E:D1:4E:80:2B,,-84,1593727200564
1593733518987,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,A6:93:AF:8C:36,Phone,-78,1593727200564
1593662400798,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,7E:D1:4E:80:2B,,-76,1593662400798
1593683999978,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,F5:F6:EC:8D:6C,Laptop,-97,1593662400798
1593675299879,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,10:6F:61:E4:A9,Speakers,-93,1593662400798
1593665344132,wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun,4B:2C:AA:88:1B,Smart TV,-94,1593662400798
1 timestamp device_id bt_address bt_name bt_rssi label
2 1593684000123 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun A6:93:AF:8C:36 Phone -92 1593684000123
3 1593705599321 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun A6:93:AF:8C:36 Phone -79 1593684000123
4 1593687638456 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 7E:D1:4E:80:2B -96 1593684000123
5 1593705600654 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 7E:D1:4E:80:2B -92 1593705600654
6 1593727199546 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 4B:2C:AA:88:1B Smart TV -95 1593705600654
7 1593727200564 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun F5:F6:EC:8D:6C Laptop -88 1593727200564
8 1593748799465 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun A6:93:AF:8C:36 Phone -91 1593727200564
9 1593738619645 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 10:6F:61:E4:A9 Speakers -90 1593727200564
10 1593747525789 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 7E:D1:4E:80:2B -84 1593727200564
11 1593733518987 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun A6:93:AF:8C:36 Phone -78 1593727200564
12 1593662400798 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 7E:D1:4E:80:2B -76 1593662400798
13 1593683999978 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun F5:F6:EC:8D:6C Laptop -97 1593662400798
14 1593675299879 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 10:6F:61:E4:A9 Speakers -93 1593662400798
15 1593665344132 wYESbVwI-4GfR-G5I6-7iKL-tOmCKs02MBun 4B:2C:AA:88:1B Smart TV -94 1593662400798

View File

@ -0,0 +1,15 @@
timestamp,device_id,bt_address,bt_name,bt_rssi,label
1593684000123,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,qaRo3mcQ-m0aJ-awAa-ACT9-6HcxDD26tsxe,Phone,-99,1593684000123
1593705599132,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S,Laptop,-87,1593684000123
1593687638321,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V,Smart TV,-89,1593684000123
1593705600312,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V,Smart TV,-96,1593705600312
1593727199456,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S,Laptop,-82,1593705600312
1593727200465,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5,,-79,1593727200465
1593748799546,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V,Smart TV,-88,1593662400789
1593738619564,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V,Smart TV,-97,1593662400789
1593747525654,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V,Smart TV,-82,1593662400789
1593733518645,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S,Laptop,-98,1593662400789
1593662400789,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5,,-84,1593662400789
1593683999798,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5,,-99,1593662400789
1593675299879,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,An2oCwIE-LOSJ-teZQ-Bjls-VTgbq1wmTA1e,Speakers,-81,1593662400789
1593665344987,7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w,An2oCwIE-LOSJ-teZQ-Bjls-VTgbq1wmTA1e,Speakers,-96,1593662400789
1 timestamp device_id bt_address bt_name bt_rssi label
2 1593684000123 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w qaRo3mcQ-m0aJ-awAa-ACT9-6HcxDD26tsxe Phone -99 1593684000123
3 1593705599132 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S Laptop -87 1593684000123
4 1593687638321 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V Smart TV -89 1593684000123
5 1593705600312 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V Smart TV -96 1593705600312
6 1593727199456 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S Laptop -82 1593705600312
7 1593727200465 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5 -79 1593727200465
8 1593748799546 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V Smart TV -88 1593662400789
9 1593738619564 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V Smart TV -97 1593662400789
10 1593747525654 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w R3cS8NPr-f43b-sIKF-fEjr-oRHjMuwzYX1V Smart TV -82 1593662400789
11 1593733518645 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w ed0moSsY-5Qzi-4kDS-tAyj-eiTUK3LmEG9S Laptop -98 1593662400789
12 1593662400789 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5 -84 1593662400789
13 1593683999798 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w skYoi2Iy-Hk69-45Ss-mMEc-mdSt0Xi4iwA5 -99 1593662400789
14 1593675299879 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w An2oCwIE-LOSJ-teZQ-Bjls-VTgbq1wmTA1e Speakers -81 1593662400789
15 1593665344987 7yKzcQm4-xKTC-0bhC-PZXC-3jAbRIXOsf5w An2oCwIE-LOSJ-teZQ-Bjls-VTgbq1wmTA1e Speakers -96 1593662400789

View File

@ -0,0 +1 @@
timestamp,device_id,bt_address,bt_name,bt_rssi,label
1 timestamp device_id bt_address bt_name bt_rssi label

View File

@ -0,0 +1 @@
timestamp,device_id,bt_address,bt_name,bt_rssi,label
1 timestamp device_id bt_address bt_name bt_rssi label

View File

@ -2,4 +2,4 @@ directory: ./
configfile: ./tests/settings/testing_config.yaml
snakefile: ./tests/Snakefile
cores: 1
forcerun: [messages_features, call_features, screen_features, battery_features]
forcerun: [messages_features, call_features, screen_features, battery_features, bluetooth_features]

View File

@ -1,6 +1,6 @@
# Add as many sensor tables as you have, they all improve the computation of PHONE_SENSED_BINS.
# If you are extracting screen or Barnett's location features, screen and locations tables are mandatory.
TABLES_FOR_SENSED_BINS: [messages, calls, screen, battery]
TABLES_FOR_SENSED_BINS: [messages, calls, screen, battery, bluetooth]
# Participants to include in the analysis
# You must create a file for each participant named pXXX containing their device_id. This can be done manually or automatically
@ -46,3 +46,9 @@ BATTERY:
DB_TABLE: battery
DAY_SEGMENTS: *day_segments
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
BLUETOOTH:
COMPUTE: True
DB_TABLE: bluetooth
DAY_SEGMENTS: *day_segments
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]