Update screen&battery episodes features with different segment format

pull/103/head
Meng Li 2020-09-29 17:13:34 -04:00
parent 0dafdd1340
commit f1717e59e7
12 changed files with 154 additions and 140 deletions

View File

@ -65,12 +65,15 @@ if config["ACTIVITY_RECOGNITION"]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/{pid}/{sensor}_deltas.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/processed/{pid}/activity_recognition_{day_segment}.csv",pid=config["PIDS"], day_segment = config["ACTIVITY_RECOGNITION"]["DAY_SEGMENTS"]))
if config["BATTERY"]["COMPUTE"]:
for provider in config["BATTERY"]["PROVIDERS"].keys():
if config["BATTERY"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/battery_deltas.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/{pid}/battery_{day_segment}.csv", pid = config["PIDS"], day_segment = config["BATTERY"]["DAY_SEGMENTS"]))
files_to_compute.extend(expand("data/interim/{pid}/battery_episodes.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/battery_episodes_resampled.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/battery_episodes_resampled_with_datetime.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/{sensor_key}_features/{sensor_key}_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["SCREEN"]["PROVIDERS"][provider]["SRC_LANGUAGE"], provider_key=provider, sensor_key="BATTERY".lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/{sensor_key}.csv", pid=config["PIDS"], sensor_key="BATTERY".lower()))
for provider in config["SCREEN"]["PROVIDERS"].keys():
if config["SCREEN"]["PROVIDERS"][provider]["COMPUTE"]:

View File

@ -121,10 +121,13 @@ ACTIVITY_RECOGNITION:
FEATURES: ["count","mostcommonactivity","countuniqueactivities","activitychangecount","sumstationary","summobile","sumvehicle"]
BATTERY:
COMPUTE: False
DB_TABLE: battery
DAY_SEGMENTS: *day_segments
PROVIDERS:
RAPIDS:
COMPUTE: False
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
SRC_FOLDER: "rapids" # inside src/features/battery
SRC_LANGUAGE: "python"
SCREEN:
DB_TABLE: screen

View File

@ -73,16 +73,14 @@ rule screen_episodes:
rule resample_episodes:
input:
"data/interim/{pid}/{sensor}_episodes.csv"
params:
sensor = "{sensor}"
output:
"data/interim/{pid}/{sensor}_episodes_resampled.csv"
script:
"../src/features/utils/resample_episodes.R"
rule resample_screen_episodes_with_datetime:
rule resample_episodes_with_datetime:
input:
sensor_input = "data/interim/{pid}/screen_episodes_resampled.csv",
sensor_input = "data/interim/{pid}/{sensor}_episodes_resampled.csv",
day_segments = "data/interim/day_segments/{pid}_day_segments.csv"
params:
timezones = None,
@ -90,7 +88,7 @@ rule resample_screen_episodes_with_datetime:
day_segments_type = config["DAY_SEGMENTS"]["TYPE"],
include_past_periodic_segments = config["DAY_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
output:
"data/interim/{pid}/screen_episodes_resampled_with_datetime.csv"
"data/interim/{pid}/{sensor}_episodes_resampled_with_datetime.csv"
script:
"../src/data/readable_datetime.R"
@ -170,16 +168,29 @@ rule activity_features:
script:
"../src/features/activity_recognition.py"
rule battery_features:
rule battery_r_features:
input:
"data/interim/{pid}/battery_episodes.csv"
battery_episodes = "data/interim/{pid}/battery_episodes_resampled_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
day_segment = "{day_segment}",
features = config["BATTERY"]["FEATURES"]
provider = lambda wildcards: config["BATTERY"]["PROVIDERS"][wildcards.provider_key],
provider_key = "{provider_key}"
output:
"data/processed/{pid}/battery_{day_segment}.csv"
"data/interim/{pid}/battery_features/battery_r_{provider_key}.csv"
script:
"../src/features/battery_features.py"
"../src/features/battery/battery_entry.R"
rule battery_python_features:
input:
battery_episodes = "data/interim/{pid}/battery_episodes_resampled_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
provider = lambda wildcards: config["BATTERY"]["PROVIDERS"][wildcards.provider_key],
provider_key = "{provider_key}"
output:
"data/interim/{pid}/battery_features/battery_python_{provider_key}.csv"
script:
"../src/features/battery/battery_entry.py"
rule screen_r_features:
input:

View File

@ -1,48 +0,0 @@
import pandas as pd
from datetime import datetime, timedelta, time
from features_utils import splitOvernightEpisodes, splitMultiSegmentEpisodes
def base_battery_features(battery_data, day_segment, requested_features):
# name of the features this function can compute
base_features_names = ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
# the subset of requested features this function can compute
features_to_compute = list(set(requested_features) & set(base_features_names))
battery_features = pd.DataFrame(columns=["local_date"] + ["battery_" + day_segment + "_" + x for x in features_to_compute])
if not battery_data.empty:
battery_data = splitOvernightEpisodes(battery_data, ["battery_diff"], [])
if day_segment != "daily":
battery_data = splitMultiSegmentEpisodes(battery_data, day_segment, ["battery_diff"])
if not battery_data.empty:
battery_data["battery_consumption_rate"] = battery_data["battery_diff"] / battery_data["time_diff"]
# for battery_data_discharge:
battery_data_discharge = battery_data[battery_data["battery_diff"] > 0]
battery_discharge_features = pd.DataFrame()
if "countdischarge" in features_to_compute:
battery_discharge_features["battery_"+day_segment+"_countdischarge"] = battery_data_discharge.groupby(["local_start_date"])["local_start_date"].count()
if "sumdurationdischarge" in features_to_compute:
battery_discharge_features["battery_"+day_segment+"_sumdurationdischarge"] = battery_data_discharge.groupby(["local_start_date"])["time_diff"].sum()
if "avgconsumptionrate" in features_to_compute:
battery_discharge_features["battery_"+day_segment+"_avgconsumptionrate"] = battery_data_discharge.groupby(["local_start_date"])["battery_consumption_rate"].mean()
if "maxconsumptionrate" in features_to_compute:
battery_discharge_features["battery_"+day_segment+"_maxconsumptionrate"] = battery_data_discharge.groupby(["local_start_date"])["battery_consumption_rate"].max()
# for battery_data_charge:
battery_data_charge = battery_data[battery_data["battery_diff"] <= 0]
battery_charge_features = pd.DataFrame()
if "countcharge" in features_to_compute:
battery_charge_features["battery_"+day_segment+"_countcharge"] = battery_data_charge.groupby(["local_start_date"])["local_start_date"].count()
if "sumdurationcharge" in features_to_compute:
battery_charge_features["battery_"+day_segment+"_sumdurationcharge"] = battery_data_charge.groupby(["local_start_date"])["time_diff"].sum()
# combine discharge features and charge features; fill the missing values with ZERO
battery_features = pd.concat([battery_discharge_features, battery_charge_features], axis=1, sort=True).fillna(0)
battery_features.index.rename("local_date", inplace=True)
battery_features = battery_features.reset_index()
return battery_features

View File

@ -0,0 +1,13 @@
source("renv/activate.R")
source("src/features/utils/utils.R")
library("dplyr")
library("tidyr")
sensor_data_file <- snakemake@input[["battery_episodes"]]
day_segments_file <- snakemake@input[["day_segments_labels"]]
provider <- snakemake@params["provider"][["provider"]]
provider_key <- snakemake@params["provider_key"]
sensor_features <- fetch_provider_features(provider, provider_key, "battery", sensor_data_file, day_segments_file)
write.csv(sensor_features, snakemake@output[[1]], row.names = FALSE)

View File

@ -0,0 +1,18 @@
import pandas as pd
from importlib import import_module, util
from pathlib import Path
# import fetch_provider_features from src/features/utils/utils.py
spec = util.spec_from_file_location("util", str(Path(snakemake.scriptdir).parent / "utils" / "utils.py"))
mod = util.module_from_spec(spec)
spec.loader.exec_module(mod)
fetch_provider_features = getattr(mod, "fetch_provider_features")
battery_episodes_file = snakemake.input["battery_episodes"]
day_segments_file = snakemake.input["day_segments_labels"]
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_features = fetch_provider_features(provider, provider_key, "battery", battery_episodes_file, day_segments_file)
sensor_features.to_csv(snakemake.output[0], index=False)

View File

@ -0,0 +1,56 @@
import pandas as pd
from datetime import datetime, timedelta, time
def rapids_features(battery_data, day_segment, provider, filter_data_by_segment, *args, **kwargs):
# name of the features this function can compute
base_features_names = ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
# the subset of requested features this function can compute
requested_features = provider["FEATURES"]
features_to_compute = list(set(requested_features) & set(base_features_names))
battery_features = pd.DataFrame(columns=["local_segment"] + ["battery_rapids_" + x for x in features_to_compute])
if not battery_data.empty:
battery_data = filter_data_by_segment(battery_data, day_segment)
battery_data = kwargs["deduplicate_episodes"](battery_data)
if not battery_data.empty:
# chunk_episodes
battery_data = kwargs["chunk_episodes"](battery_data)
if not battery_data.empty:
battery_data["episode_id"] = ((battery_data.battery_status != battery_data.battery_status.shift()) | (battery_data.start_timestamp - battery_data.end_timestamp.shift() > 1)).cumsum()
grouped = battery_data.groupby(by=["local_segment", "episode_id", "battery_status"])
battery_episodes= grouped[["time_diff"]].sum()
battery_episodes["battery_diff"] = grouped["battery_level"].first() - grouped["battery_level"].last()
battery_episodes["battery_consumption_rate"] = battery_episodes["battery_diff"] / battery_episodes["time_diff"]
battery_episodes.reset_index(inplace=True)
# for discharge episodes
battery_discharge_episodes = battery_episodes[(battery_episodes["battery_status"] == 3) | (battery_episodes["battery_status"] == 4)]
battery_discharge_features = pd.DataFrame()
if "countdischarge" in features_to_compute:
battery_discharge_features["battery_rapids_countdischarge"] = battery_discharge_episodes.groupby(["local_segment"])["episode_id"].count()
if "sumdurationdischarge" in features_to_compute:
battery_discharge_features["battery_rapids_sumdurationdischarge"] = battery_discharge_episodes.groupby(["local_segment"])["time_diff"].sum()
if "avgconsumptionrate" in features_to_compute:
battery_discharge_features["battery_rapids_avgconsumptionrate"] = battery_discharge_episodes.groupby(["local_segment"])["battery_consumption_rate"].mean()
if "maxconsumptionrate" in features_to_compute:
battery_discharge_features["battery_rapids_maxconsumptionrate"] = battery_discharge_episodes.groupby(["local_segment"])["battery_consumption_rate"].max()
# for charge episodes
battery_charge_episodes = battery_episodes[(battery_episodes["battery_status"] == 2) | (battery_episodes["battery_status"] == 5)]
battery_charge_features = pd.DataFrame()
if "countcharge" in features_to_compute:
battery_charge_features["battery_rapids_countcharge"] = battery_charge_episodes.groupby(["local_segment"])["episode_id"].count()
if "sumdurationcharge" in features_to_compute:
battery_charge_features["battery_rapids_sumdurationcharge"] = battery_charge_episodes.groupby(["local_segment"])["time_diff"].sum()
# combine discharge features and charge features; fill the missing values with ZERO
battery_features = pd.concat([battery_discharge_features, battery_charge_features], axis=1, sort=True).fillna(0)
battery_features.index.rename("local_segment", inplace=True)
battery_features = battery_features.reset_index()
return battery_features

View File

@ -44,7 +44,6 @@ get_screen_episodes <- function(screen){
filter( (screen_status == 3 & lead(screen_status) == 0) | (screen_status == 0 & lag(screen_status) == 3) ) %>%
summarise(episode = "unlock",
screen_sequence = toString(screen_status),
time_diff = (last(timestamp) - first(timestamp)) / (1000 * 60),
start_timestamp = first(timestamp),
end_timestamp = last(timestamp)) %>%
filter(str_detect(screen_sequence,
@ -58,7 +57,6 @@ get_screen_episodes <- function(screen){
if(nrow(screen) < 2){
episodes <- data.frame(episode = character(),
screen_sequence = character(),
time_diff = numeric(),
start_timestamp = character(),
end_timestamp = character())
} else {

View File

@ -47,6 +47,7 @@ def rapids_features(screen_data, day_segment, provider, filter_data_by_segment,
if not screen_data.empty:
screen_data = filter_data_by_segment(screen_data, day_segment)
screen_data = kwargs["deduplicate_episodes"](screen_data)
if not screen_data.empty:
# chunk_episodes
screen_data = kwargs["chunk_episodes"](screen_data)

View File

@ -1,5 +1,6 @@
source("renv/activate.R")
library("dplyr")
library("tidyr")
# Using mostly indeixng instead of tidyr because is faster
resampled_episodes <- read.csv(snakemake@input[[1]])

View File

@ -1,44 +0,0 @@
import pandas as pd
def resample_screen_deltas(screen_deltas):
column_names = ("episode_id", "episode", "screen_sequence", "timestamp", "duration")
records_resampled = []
for _, row in screen_deltas.iterrows():
episode_id, episode, screen_sequence = row["episode_id"], row["episode"], row["screen_sequence"]
start_timestamp, end_timestamp = row["start_timestamp"], row["end_timestamp"]
for timestamp in range(start_timestamp, end_timestamp, 1000 * 60):
records_resampled.append((episode_id, episode, screen_sequence, timestamp, min(1, (end_timestamp - timestamp) / (1000 * 60))))
return records_resampled, column_names
def resample_battery_deltas(battery_deltas):
column_names = ("battery_diff", "timestamp")
records_resampled = []
for _, row in battery_deltas.iterrows():
start_timestamp, end_timestamp = row["start_timestamp"], row["end_timestamp"]
battery_diff = row["battery_diff"] / row["time_diff"]
for timestamp in range(start_timestamp, end_timestamp, 1000 * 60):
records_resampled.append((battery_diff, timestamp))
return records_resampled, column_names
deltas = pd.read_csv(snakemake.input[0])
sensor = snakemake.params["sensor"]
if sensor == "battery":
records_resampled, column_names = resample_battery_deltas(deltas)
if sensor == "screen":
records_resampled, column_names = resample_screen_deltas(deltas)
deltas_resampled = pd.DataFrame(data=records_resampled, columns=column_names)
deltas_resampled.to_csv(snakemake.output[0], index=False)

View File

@ -13,45 +13,47 @@ def filter_data_by_segment(data, day_segment):
data[["local_segment","timestamps_segment"]] = data["local_segment"].str.split(pat =";",n=1, expand=True)
return(data)
# Each minute could fall into two segments.
# Firstly, we generate two rows for each resampled minute via resample_episodes rule:
# the first row's timestamp column is the start_timestamp, while the second row's timestamp column is the end_timestamp.
# Then, we check if the segments of start_timestamp are the same as the segments of end_timestamp:
# if they are the same (only fall into one segment), we will discard the second row;
# otherwise (fall into two segments), we will keep both.
def deduplicate_episodes(sensor_episodes):
# Drop rows where segments of start_timestamp and end_timestamp are the same
sensor_episodes = sensor_episodes.drop_duplicates(subset=["start_timestamp", "end_timestamp", "local_segment"], keep="first")
# Delete useless columns
for drop_col in ["utc_date_time", "local_date_time", "local_date", "local_time", "local_hour", "local_minute"]:
del sensor_episodes[drop_col]
return sensor_episodes
def chunk_episodes(sensor_episodes):
import pytz, copy
import pandas as pd
from datetime import datetime
# avoid warning messages: SettingWithCopyWarning
sensor_episodes = sensor_episodes.copy()
# Unix timestamp for current segment in milliseconds
sensor_episodes[["segment_start_timestamp", "segment_end_timestamp"]] = sensor_episodes["timestamps_segment"].str.split(",", expand=True)
# convert string to datetime with local timezone
sensor_episodes["start_datetime"] = pd.to_datetime(sensor_episodes["local_segment"].str[-39:-20], format="%Y-%m-%d#%H:%M:%S")
sensor_episodes["start_datetime"] = pd.concat([data["start_datetime"].dt.tz_localize(tz) for tz, data in sensor_episodes.groupby("local_timezone")])
# Compute chunked timestamp
sensor_episodes["chunked_start_timestamp"] = sensor_episodes[["start_timestamp", "segment_start_timestamp"]].max(axis=1)
sensor_episodes["chunked_end_timestamp"] = sensor_episodes[["end_timestamp", "segment_end_timestamp"]].min(axis=1)
sensor_episodes["end_datetime"] = pd.to_datetime(sensor_episodes["local_segment"].str[-19:], format="%Y-%m-%d#%H:%M:%S")
sensor_episodes["end_datetime"] = pd.concat([data["end_datetime"].dt.tz_localize(tz) for tz, data in sensor_episodes.groupby("local_timezone")])
# unix timestamp in milliseconds
sensor_episodes["start_timestamp"] = sensor_episodes["start_datetime"].apply(lambda dt: dt.timestamp() * 1000)
sensor_episodes["end_timestamp"] = sensor_episodes["end_datetime"].apply(lambda dt: dt.timestamp() * 1000)
# compute chunked timestamp
sensor_episodes["chunked_start_timestamp"] = sensor_episodes[["timestamp", "start_timestamp"]].max(axis=1)
sensor_episodes["timestamp_plus_duration"] = sensor_episodes["timestamp"] + sensor_episodes["duration"] * 1000 * 60
sensor_episodes["chunked_end_timestamp"] = sensor_episodes[["timestamp_plus_duration", "end_timestamp"]].min(axis=1)
# time_diff: intersection of current row and segment
# Compute time_diff: intersection of current row and segment
sensor_episodes["time_diff"] = (sensor_episodes["chunked_end_timestamp"] - sensor_episodes["chunked_start_timestamp"]) / (1000 * 60)
# compute chunked datetime
# Compute chunked datetime
sensor_episodes["chunked_start_datetime"] = pd.to_datetime(sensor_episodes["chunked_start_timestamp"], unit="ms", utc=True)
sensor_episodes["chunked_start_datetime"] = pd.concat([data["chunked_start_datetime"].dt.tz_convert(tz) for tz, data in sensor_episodes.groupby("local_timezone")])
sensor_episodes["chunked_end_datetime"] = pd.to_datetime(sensor_episodes["chunked_end_timestamp"], unit="ms", utc=True)
sensor_episodes["chunked_end_datetime"] = pd.concat([data["chunked_end_datetime"].dt.tz_convert(tz) for tz, data in sensor_episodes.groupby("local_timezone")])
# merge episodes
sensor_episodes_grouped = sensor_episodes.groupby(["episode_id", "episode", "screen_sequence"])
# Merge episodes
cols_for_groupby = [col for col in sensor_episodes.columns if col not in ["local_timezone", "timestamps_segment", "timestamp", "assigned_segments", "start_datetime", "end_datetime", "start_timestamp", "end_timestamp", "time_diff", "segment_start_timestamp", "segment_end_timestamp", "chunked_start_timestamp", "chunked_end_timestamp", "chunked_start_datetime", "chunked_end_datetime"]]
sensor_episodes_grouped = sensor_episodes.groupby(by=cols_for_groupby)
merged_sensor_episodes = sensor_episodes_grouped[["time_diff"]].sum()
merged_sensor_episodes["local_segment"] = sensor_episodes_grouped["local_segment"].first()
merged_sensor_episodes["start_timestamp"] = sensor_episodes_grouped["chunked_start_timestamp"].first()
merged_sensor_episodes["end_timestamp"] = sensor_episodes_grouped["chunked_end_timestamp"].last()
@ -80,7 +82,7 @@ def fetch_provider_features(provider, provider_key, config_key, sensor_data_file
for day_segment in day_segments_labels["label"]:
print("{} Processing {} {} {}".format(rapids_log_tag, config_key, provider_key, day_segment))
features = feature_function(sensor_data, day_segment, provider, filter_data_by_segment=filter_data_by_segment, chunk_episodes=chunk_episodes)
features = feature_function(sensor_data, day_segment, provider, filter_data_by_segment=filter_data_by_segment, deduplicate_episodes=deduplicate_episodes, chunk_episodes=chunk_episodes)
sensor_features = sensor_features.merge(features, how="outer")
else:
for feature in provider["FEATURES"]: