Revert "Add Speech sensor - preparation."

This reverts commit 74fd4dfbd7.
sociality-task
Primoz 2023-01-17 12:06:53 +00:00
parent 9b45188a61
commit e27ec0269f
4 changed files with 1 additions and 99 deletions

View File

@ -174,14 +174,6 @@ for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
for provider in config["PHONE_SPEECH"]["PROVIDERS"].keys():
if config["PHONE_SPEECH"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/phone_speech_raw.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/phone_speech_with_datetime.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_speech_clean.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_speech_features/phone_speech_{language}_{provider_key}.csv",pid=config["PIDS"],language=get_script_language(config["PHONE_SPEECH"]["PROVIDERS"][provider]["SRC_SCRIPT"]),provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_speech.csv", pid=config["PIDS"]))
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
for provider in config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"].keys():

View File

@ -3,7 +3,7 @@
########################################################################################################################
# See https://www.rapids.science/latest/setup/configuration/#participant-files
PIDS: ['p03'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
PIDS: ['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
CREATE_PARTICIPANT_FILES:
@ -248,15 +248,6 @@ PHONE_ESM:
FEATURES: [mean]
SRC_SCRIPT: src/features/phone_esm/straw/main.py
# Custom sensor
PHONE_SPEECH:
CONTAINER: speech
PROVIDERS:
RAPIDS:
COMPUTE: True
FEATURES: ["countscans"]
SRC_SCRIPT: src/features/phone_speech/straw/main.py
# See https://www.rapids.science/latest/features/phone-keyboard/
PHONE_KEYBOARD:
CONTAINER: keyboard
@ -358,7 +349,6 @@ PHONE_WIFI_VISIBLE:
########################################################################################################################
# FITBIT #
########################################################################################################################

View File

@ -345,19 +345,6 @@ rule esm_features:
script:
"../src/features/entry.py"
rule phone_speech_python_features:
input:
sensor_data = "data/interim/{pid}/phone_speech_with_datetime.csv",
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
params:
provider = lambda wildcards: config["PHONE_SPEECH"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "phone_speech",
output:
"data/interim/{pid}/phone_speech_features/phone_speech_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule phone_keyboard_python_features:
input:
sensor_data = "data/raw/{pid}/phone_keyboard_with_datetime.csv",

View File

@ -1,67 +0,0 @@
import pandas as pd
# TODO: adjust features files
QUESTIONNAIRE_IDS = {
"sleep_quality": 1,
"PANAS_positive_affect": 8,
"PANAS_negative_affect": 9,
"JCQ_job_demand": 10,
"JCQ_job_control": 11,
"JCQ_supervisor_support": 12,
"JCQ_coworker_support": 13,
"PFITS_supervisor": 14,
"PFITS_coworkers": 15,
"UWES_vigor": 16,
"UWES_dedication": 17,
"UWES_absorption": 18,
"COPE_active": 19,
"COPE_support": 20,
"COPE_emotions": 21,
"balance_life_work": 22,
"balance_work_life": 23,
"recovery_experience_detachment": 24,
"recovery_experience_relaxation": 25,
"symptoms": 26,
"appraisal_stressfulness_event": 87,
"appraisal_threat": 88,
"appraisal_challenge": 89,
"appraisal_event_time": 90,
"appraisal_event_duration": 91,
"appraisal_event_work_related": 92,
"appraisal_stressfulness_period": 93,
"late_work": 94,
"work_hours": 95,
"left_work": 96,
"activities": 97,
"coffee_breaks": 98,
"at_work_yet": 99,
}
def straw_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
esm_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_features = provider["FEATURES"]
# name of the features this function can compute
requested_scales = provider["SCALES"]
base_features_names = ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support",
"appraisal_stressfulness_period", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]
#TODO Check valid questionnaire and feature names.
# the subset of requested features this function can compute
features_to_compute = list(set(requested_features) & set(base_features_names))
esm_features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
if not esm_data.empty:
esm_data = filter_data_by_segment(esm_data, time_segment)
if not esm_data.empty:
esm_features = pd.DataFrame()
for scale in requested_scales:
questionnaire_id = QUESTIONNAIRE_IDS[scale]
mask = esm_data["questionnaire_id"] == questionnaire_id
esm_features[scale + "_mean"] = esm_data.loc[mask].groupby(["local_segment"])["esm_user_score"].mean()
#TODO Create the column esm_user_score in esm_clean. Currently, this is only done when reversing.
esm_features = esm_features.reset_index()
if 'index' in esm_features: # In calse of empty esm_features df
esm_features.rename(columns={'index': 'local_segment'}, inplace=True)
return esm_features