Migrate calls to new provider file structure

pull/103/head
JulioV 2020-08-28 17:50:49 -04:00
parent 011b9736d5
commit e269062439
6 changed files with 157 additions and 25 deletions

View File

@ -37,11 +37,13 @@ if config["MESSAGES"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["MESSAGES"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/messages_{messages_type}.csv", pid=config["PIDS"], messages_type = config["MESSAGES"]["TYPES"]))
if config["CALLS"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/calls_{call_type}.csv", pid=config["PIDS"], call_type=config["CALLS"]["TYPES"]))
for provider in config["CALLS"]["PROVIDERS"].keys():
if config["CALLS"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/interim/{pid}/{sensor_key}_features/{sensor_key}_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["CALLS"]["PROVIDERS"][provider]["SRC_LANGUAGE"], provider_key=provider, sensor_key="CALLS".lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/{sensor_key}.csv", pid=config["PIDS"], sensor_key="CALLS".lower()))
if config["BLUETOOTH"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BLUETOOTH"]["DB_TABLE"]))

View File

@ -52,14 +52,18 @@ MESSAGES:
# Communication call features config, TYPES and FEATURES keys need to match
CALLS:
COMPUTE: False
DB_TABLE: calls
TYPES: [missed, incoming, outgoing]
FEATURES:
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
DAY_SEGMENTS: *day_segments
PROVIDERS:
RAPIDS:
COMPUTE: True
CALL_TYPES: [missed, incoming, outgoing]
FEATURES:
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
DAY_SEGMENTS: *day_segments
SRC_LANGUAGE: "r"
SRC_FOLDER: "rapids"
APPLICATION_GENRES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
@ -73,26 +77,25 @@ LOCATIONS:
FUSED_RESAMPLED_CONSECUTIVE_THRESHOLD: 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold
FUSED_RESAMPLED_TIME_SINCE_VALID_LOCATION: 720 # minutes, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row
TIMEZONE: *timezone
PROVIDERS:
DORYAB:
COMPUTE: True
COMPUTE: False
FEATURES: ["locationvariance","loglocationvariance","totaldistance","averagespeed","varspeed","circadianmovement","numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","meanlengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy"]
DBSCAN_EPS: 10 # meters
DBSCAN_MINSAMPLES: 5
THRESHOLD_STATIC : 1 # km/h
MAXIMUM_GAP_ALLOWED: 300
MINUTES_DATA_USED: True
MINUTES_DATA_USED: False
SAMPLING_FREQUENCY: 0
SRC_FOLDER: "doryab"
SRC_LANGUAGE: "python"
BARNETT:
COMPUTE: True
COMPUTE: False
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius
TIMEZONE: *timezone
MINUTES_DATA_USED: True # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
SRC_FOLDER: "barnett"
SRC_LANGUAGE: "r"

View File

@ -18,17 +18,29 @@ rule messages_features:
script:
"../src/features/messages_features.R"
rule call_features:
rule calls_python_features:
input:
expand("data/raw/{{pid}}/{sensor}_with_datetime_unified.csv", sensor=config["CALLS"]["DB_TABLE"]),
day_segments_labels = expand("data/interim/{sensor}_day_segments_labels.csv", sensor=config["CALLS"]["DB_TABLE"])
sensor_data = expand("data/raw/{{pid}}/{sensor}_with_datetime_unified.csv", sensor=config["CALLS"]["DB_TABLE"]),
day_segments_labels = "data/interim/day_segments_labels.csv"
params:
call_type = "{call_type}",
features = lambda wildcards: config["CALLS"]["FEATURES"][wildcards.call_type]
provider = lambda wildcards: config["CALLS"]["PROVIDERS"][wildcards.provider_key],
provider_key = "{provider_key}"
output:
"data/processed/{pid}/calls_{call_type}.csv"
"data/interim/{pid}/calls_features/calls_python_{provider_key}.csv"
script:
"../src/features/call_features.R"
"../src/features/calls/calls_entry.py"
rule calls_r_features:
input:
sensor_data = expand("data/raw/{{pid}}/{sensor}_with_datetime_unified.csv", sensor=config["CALLS"]["DB_TABLE"]),
day_segments_labels = "data/interim/day_segments_labels.csv"
params:
provider = lambda wildcards: config["CALLS"]["PROVIDERS"][wildcards.provider_key],
provider_key = "{provider_key}"
output:
"data/interim/{pid}/calls_features/calls_r_{provider_key}.csv"
script:
"../src/features/calls/calls_entry.R"
rule battery_deltas:
input:

View File

@ -0,0 +1,13 @@
source("renv/activate.R")
source("src/features/utils/utils.R")
library("dplyr")
library("tidyr")
sensor_data_file <- snakemake@input[["sensor_data"]]
day_segments_file <- snakemake@input[["day_segments_labels"]]
provider <- snakemake@params["provider"][["provider"]]
provider_key <- snakemake@params["provider_key"]
sensor_features <- fetch_provider_features(provider, provider_key, "calls", sensor_data_file, day_segments_file)
write.csv(sensor_features, snakemake@output[[1]], row.names = FALSE)

View File

@ -0,0 +1,18 @@
import pandas as pd
from importlib import import_module, util
from pathlib import Path
# import fetch_provider_features from src/features/utils/utils.py
spec = util.spec_from_file_location("util", str(Path(snakemake.scriptdir).parent / "utils" / "utils.py"))
mod = util.module_from_spec(spec)
spec.loader.exec_module(mod)
fetch_provider_features = getattr(mod, "fetch_provider_features")
sensor_data_file = snakemake.input["sensor_data"][0]
day_segments_file = snakemake.input["day_segments_labels"]
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_features = fetch_provider_features(provider, provider_key, "calls", sensor_data_file, day_segments_file)
sensor_features.to_csv(snakemake.output[0], index=False)

View File

@ -0,0 +1,84 @@
library('tidyr')
library('stringr')
library('entropy')
Mode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
call_features_of_type <- function(calls, call_type, day_segment, requested_features){
# Output dataframe
features = data.frame(local_segment = character(), stringsAsFactors = FALSE)
# The name of the features this function can compute
base_features_names <- c("count", "distinctcontacts", "meanduration", "sumduration", "minduration", "maxduration", "stdduration", "modeduration", "entropyduration", "timefirstcall", "timelastcall", "countmostfrequentcontact")
# The subset of requested features this function can compute
features_to_compute <- intersect(base_features_names, requested_features)
# If there are not features or data to work with, return an empty df with appropiate columns names
if(length(features_to_compute) == 0)
return(features)
if(nrow(calls) < 1)
return(cbind(features, read.csv(text = paste(paste("calls_rapids", call_type, features_to_compute, sep = "_"), collapse = ","), stringsAsFactors = FALSE)))
for(feature_name in features_to_compute){
if(feature_name == "countmostfrequentcontact"){
# Get the number of messages for the most frequent contact throughout the study
mostfrequentcontact <- calls %>%
group_by(trace) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N)) %>%
head(1) %>% # if there are multiple contacts with the same amount of messages pick the first one only
pull(trace)
feature <- calls %>%
filter(trace == mostfrequentcontact) %>%
group_by(local_segment) %>%
summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := n()) %>%
replace(is.na(.), 0)
features <- merge(features, feature, by="local_segment", all = TRUE)
} else {
feature <- calls %>%
group_by(local_segment)
feature <- switch(feature_name,
"count" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := n()),
"distinctcontacts" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := n_distinct(trace)),
"meanduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := mean(call_duration)),
"sumduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := sum(call_duration)),
"minduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := min(call_duration)),
"maxduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := max(call_duration)),
"stdduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := sd(call_duration)),
"modeduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := Mode(call_duration)),
"entropyduration" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := entropy.MillerMadow(call_duration)),
"timefirstcall" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := first(local_hour) * 60 + first(local_minute)),
"timelastcall" = feature %>% summarise(!!paste("calls_rapids", call_type, feature_name, sep = "_") := last(local_hour) * 60 + last(local_minute)))
features <- merge(features, feature, by="local_segment", all = TRUE)
}
}
features <- features %>% mutate_at(vars(contains("countmostfrequentcontact")), list( ~ replace_na(., 0)))
return(features)
}
rapids_features <- function(calls, day_segment, provider){
calls <- calls %>% filter_data_by_segment(day_segment)
call_types = provider[["CALL_TYPES"]]
call_features <- setNames(data.frame(matrix(ncol=1, nrow=0)), c("local_segment"))
for(call_type in call_types){
# Filter rows that belong to the calls type and day segment of interest
call_type_label = ifelse(call_type == "incoming", "1", ifelse(call_type == "outgoing", "2", ifelse(call_type == "missed", "3", NA)))
if(is.na(call_type_label))
stop(paste("Call type can online be incoming, outgoing or missed but instead you typed: ", call_type, " in config[CALLS][CALL_TYPES]"))
requested_features <- provider[["FEATURES"]][[call_type]]
calls_of_type <- calls %>% filter(call_type == call_type_label)
features <- call_features_of_type(calls_of_type, call_type, day_segment, requested_features)
call_features <- merge(call_features, features, all=TRUE)
}
return(call_features)
}