Various small changes.
parent
212cf300f8
commit
dda4554d46
12
config.yaml
12
config.yaml
|
@ -489,7 +489,7 @@ EMPATICA_ACCELEROMETER:
|
||||||
WINDOWS:
|
WINDOWS:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
WINDOW_LENGTH: 15 # specify window length in seconds
|
WINDOW_LENGTH: 15 # specify window length in seconds
|
||||||
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest_mean', 'nsmallest_mean', 'count_windows']
|
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
|
||||||
STANDARDIZE_FEATURES: False
|
STANDARDIZE_FEATURES: False
|
||||||
SRC_SCRIPT: src/features/empatica_accelerometer/cr/main.py
|
SRC_SCRIPT: src/features/empatica_accelerometer/cr/main.py
|
||||||
|
|
||||||
|
@ -518,7 +518,7 @@ EMPATICA_TEMPERATURE:
|
||||||
WINDOWS:
|
WINDOWS:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
WINDOW_LENGTH: 300 # specify window length in seconds
|
WINDOW_LENGTH: 300 # specify window length in seconds
|
||||||
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest_mean', 'nsmallest_mean', 'count_windows']
|
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
|
||||||
STANDARDIZE_FEATURES: False
|
STANDARDIZE_FEATURES: False
|
||||||
SRC_SCRIPT: src/features/empatica_temperature/cr/main.py
|
SRC_SCRIPT: src/features/empatica_temperature/cr/main.py
|
||||||
|
|
||||||
|
@ -536,11 +536,11 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
|
||||||
'sigTonicDifference', 'freqFeats','maxPeakAmplitudeChangeBefore', 'maxPeakAmplitudeChangeAfter', 'avgPeakAmplitudeChangeBefore',
|
'sigTonicDifference', 'freqFeats','maxPeakAmplitudeChangeBefore', 'maxPeakAmplitudeChangeAfter', 'avgPeakAmplitudeChangeBefore',
|
||||||
'avgPeakAmplitudeChangeAfter', 'avgPeakChangeRatio', 'maxPeakIncreaseTime', 'maxPeakDecreaseTime', 'maxPeakDuration', 'maxPeakChangeRatio',
|
'avgPeakAmplitudeChangeAfter', 'avgPeakChangeRatio', 'maxPeakIncreaseTime', 'maxPeakDecreaseTime', 'maxPeakDuration', 'maxPeakChangeRatio',
|
||||||
'avgPeakIncreaseTime', 'avgPeakDecreaseTime', 'avgPeakDuration', 'signalOverallChange', 'changeDuration', 'changeRate', 'significantIncrease',
|
'avgPeakIncreaseTime', 'avgPeakDecreaseTime', 'avgPeakDuration', 'signalOverallChange', 'changeDuration', 'changeRate', 'significantIncrease',
|
||||||
'significantDecrease']
|
'significantDecrease', maxPeakResponseSlopeBefore, maxPeakResponseSlopeAfter]
|
||||||
WINDOWS:
|
WINDOWS:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
WINDOW_LENGTH: 60 # specify window length in seconds
|
WINDOW_LENGTH: 60 # specify window length in seconds
|
||||||
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest_mean', 'nsmallest_mean', count_windows, eda_num_peaks_non_zero]
|
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', count_windows, eda_num_peaks_non_zero]
|
||||||
STANDARDIZE_FEATURES: False
|
STANDARDIZE_FEATURES: False
|
||||||
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cr/main.py
|
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cr/main.py
|
||||||
|
|
||||||
|
@ -559,7 +559,7 @@ EMPATICA_BLOOD_VOLUME_PULSE:
|
||||||
WINDOWS:
|
WINDOWS:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
WINDOW_LENGTH: 300 # specify window length in seconds
|
WINDOW_LENGTH: 300 # specify window length in seconds
|
||||||
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest_mean', 'nsmallest_mean', 'count_windows', 'hrv_num_windows_non_nan']
|
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
|
||||||
STANDARDIZE_FEATURES: False
|
STANDARDIZE_FEATURES: False
|
||||||
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cr/main.py
|
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cr/main.py
|
||||||
|
|
||||||
|
@ -579,7 +579,7 @@ EMPATICA_INTER_BEAT_INTERVAL:
|
||||||
WINDOWS:
|
WINDOWS:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
WINDOW_LENGTH: 300 # specify window length in seconds
|
WINDOW_LENGTH: 300 # specify window length in seconds
|
||||||
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest_mean', 'nsmallest_mean', 'count_windows', 'hrv_num_windows_non_nan']
|
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
|
||||||
STANDARDIZE_FEATURES: False
|
STANDARDIZE_FEATURES: False
|
||||||
SRC_SCRIPT: src/features/empatica_inter_beat_interval/cr/main.py
|
SRC_SCRIPT: src/features/empatica_inter_beat_interval/cr/main.py
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 98 KiB |
|
@ -111,7 +111,7 @@ dependencies:
|
||||||
- biosppy==0.8.0
|
- biosppy==0.8.0
|
||||||
- cached-property==1.5.2
|
- cached-property==1.5.2
|
||||||
- configargparse==0.15.1
|
- configargparse==0.15.1
|
||||||
- cr-features==0.1.13
|
- cr-features==0.1.15
|
||||||
- cycler==0.11.0
|
- cycler==0.11.0
|
||||||
- decorator==4.4.2
|
- decorator==4.4.2
|
||||||
- fonttools==4.33.2
|
- fonttools==4.33.2
|
||||||
|
@ -131,6 +131,7 @@ dependencies:
|
||||||
- pyrsistent==0.15.5
|
- pyrsistent==0.15.5
|
||||||
- pywavelets==1.3.0
|
- pywavelets==1.3.0
|
||||||
- ratelimiter==1.2.0.post0
|
- ratelimiter==1.2.0.post0
|
||||||
|
- seaborn==0.11.2
|
||||||
- shortuuid==1.0.8
|
- shortuuid==1.0.8
|
||||||
- snakemake==5.30.2
|
- snakemake==5.30.2
|
||||||
- toposort==1.5
|
- toposort==1.5
|
||||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 98 KiB |
|
@ -22,13 +22,13 @@ def extract_second_order_features(intraday_features, so_features_names, prefix="
|
||||||
if "sd" in so_features_names:
|
if "sd" in so_features_names:
|
||||||
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std().add_suffix("_SO_sd")], axis=1)
|
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std().add_suffix("_SO_sd")], axis=1)
|
||||||
|
|
||||||
if "nlargest_mean" in so_features_names: # largest 5 -- maybe there is a faster groupby solution?
|
if "nlargest" in so_features_names: # largest 5 -- maybe there is a faster groupby solution?
|
||||||
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
|
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
|
||||||
so_features[column+"_SO_nlargest_mean"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nlargest(5).mean())
|
so_features[column+"_SO_nlargest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nlargest(5).mean())
|
||||||
|
|
||||||
if "nsmallest_mean" in so_features_names: # smallest 5 -- maybe there is a faster groupby solution?
|
if "nsmallest" in so_features_names: # smallest 5 -- maybe there is a faster groupby solution?
|
||||||
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
|
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
|
||||||
so_features[column+"_SO_nsmallest_mean"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nsmallest(5).mean())
|
so_features[column+"_SO_nsmallest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nsmallest(5).mean())
|
||||||
|
|
||||||
if "count_windows" in so_features_names:
|
if "count_windows" in so_features_names:
|
||||||
so_features["SO_windowsCount"] = intraday_features.groupby(groupby_cols).count()[prefix+"level_1"]
|
so_features["SO_windowsCount"] = intraday_features.groupby(groupby_cols).count()[prefix+"level_1"]
|
||||||
|
|
|
@ -14,22 +14,20 @@ df = pd.read_csv(path)
|
||||||
df_num_peaks_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] == 0]
|
df_num_peaks_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] == 0]
|
||||||
columns_num_peaks_zero = df_num_peaks_zero.columns[df_num_peaks_zero.isna().any()].tolist()
|
columns_num_peaks_zero = df_num_peaks_zero.columns[df_num_peaks_zero.isna().any()].tolist()
|
||||||
|
|
||||||
df_num_peaks_non_zero_t = df[df["empatica_electrodermal_activity_cr_numPeaks"] != 0]
|
df_num_peaks_non_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] != 0]
|
||||||
df_num_peaks_non_zero = df_num_peaks_non_zero_t[columns_num_peaks_zero]
|
df_num_peaks_non_zero = df_num_peaks_non_zero[columns_num_peaks_zero]
|
||||||
|
|
||||||
|
print(df_num_peaks_non_zero[df_num_peaks_non_zero["empatica_electrodermal_activity_cr_maxPeakAmplitudeChangeBefore"] != 0])
|
||||||
|
|
||||||
|
|
||||||
# row_has_NaN = is_NaN. any(axis=1)
|
|
||||||
# rows_with_NaN = df[row_has_NaN]
|
|
||||||
# print(rows_with_NaN.size)
|
|
||||||
pd.set_option('display.max_columns', None)
|
pd.set_option('display.max_columns', None)
|
||||||
# # pd.set_option('display.max_rows', None)
|
|
||||||
# print(df_num_peaks_non_zero)
|
|
||||||
df_q = pd.DataFrame()
|
df_q = pd.DataFrame()
|
||||||
for col in df_num_peaks_non_zero:
|
for col in df_num_peaks_non_zero:
|
||||||
df_q[col] = pd.to_numeric(pd.cut(df_num_peaks_non_zero[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
|
df_q[col] = pd.to_numeric(pd.cut(df_num_peaks_non_zero[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
|
||||||
|
|
||||||
sns.heatmap(df_q)
|
sns.heatmap(df_q)
|
||||||
plt.savefig('eda_windows_p01_window_non_zero.png', bbox_inches='tight')
|
plt.savefig('eda_windows_p01_window_values_non_zero_peak_distribution_0thresh.png', bbox_inches='tight')
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
# Filter columns that do not contain 0
|
# Filter columns that do not contain 0
|
||||||
|
@ -39,12 +37,4 @@ zero_cols = list(set(columns_num_peaks_zero) - set(non_zero_cols))
|
||||||
print(non_zero_cols, "\n")
|
print(non_zero_cols, "\n")
|
||||||
print(zero_cols)
|
print(zero_cols)
|
||||||
|
|
||||||
# maxPeakAmplitudeChangeBefore
|
|
||||||
|
|
||||||
mpacb = df_num_peaks_non_zero_t\
|
|
||||||
[(df_num_peaks_non_zero_t['empatica_electrodermal_activity_cr_avgPeakAmplitudeChangeBefore'] != 0) \
|
|
||||||
& (df_num_peaks_non_zero_t['empatica_electrodermal_activity_cr_numPeaks'] != 0)]
|
|
||||||
print(mpacb['empatica_electrodermal_activity_cr_numPeaks'])
|
|
||||||
sns.heatmap(mpacb['empatica_electrodermal_activity_cr_numPeaks'])
|
|
||||||
plt.savefig('maxPeakAmplitudeChangeBefore.png', bbox_inches='tight')
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue