Add a rule to preprocess and clean ESM.
parent
d4a4bbbff0
commit
d470eef27e
|
@ -167,6 +167,10 @@ for provider in config["PHONE_CONVERSATION"]["PROVIDERS"].keys():
|
||||||
for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
|
for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
|
||||||
if config["PHONE_ESM"]["PROVIDERS"][provider]["COMPUTE"]:
|
if config["PHONE_ESM"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||||
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_raw.csv",pid=config["PIDS"]))
|
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_raw.csv",pid=config["PIDS"]))
|
||||||
|
files_to_compute.extend(expand("data/raw/{pid}/phone_esm_with_datetime.csv",pid=config["PIDS"]))
|
||||||
|
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_clean.csv",pid=config["PIDS"]))
|
||||||
|
#files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
|
||||||
|
#files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||||
|
|
||||||
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
|
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
|
||||||
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
|
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
|
||||||
|
|
|
@ -177,7 +177,6 @@ rule resample_episodes_with_datetime:
|
||||||
script:
|
script:
|
||||||
"../src/data/datetime/readable_datetime.R"
|
"../src/data/datetime/readable_datetime.R"
|
||||||
|
|
||||||
|
|
||||||
rule phone_application_categories:
|
rule phone_application_categories:
|
||||||
input:
|
input:
|
||||||
"data/raw/{pid}/phone_applications_{type}_with_datetime.csv"
|
"data/raw/{pid}/phone_applications_{type}_with_datetime.csv"
|
||||||
|
@ -191,6 +190,14 @@ rule phone_application_categories:
|
||||||
script:
|
script:
|
||||||
"../src/data/application_categories.R"
|
"../src/data/application_categories.R"
|
||||||
|
|
||||||
|
rule preprocess_esm:
|
||||||
|
input: "data/raw/{pid}/phone_esm_with_datetime.csv"
|
||||||
|
params:
|
||||||
|
questionnaire_ids = [8,9]
|
||||||
|
output: "data/interim/{pid}/phone_esm_clean.csv"
|
||||||
|
script:
|
||||||
|
"../src/features/phone_esm/straw/preprocess.py"
|
||||||
|
|
||||||
rule pull_wearable_data:
|
rule pull_wearable_data:
|
||||||
input: unpack(pull_wearable_data_input_with_mutation_scripts)
|
input: unpack(pull_wearable_data_input_with_mutation_scripts)
|
||||||
params:
|
params:
|
||||||
|
|
|
@ -0,0 +1,113 @@
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
ESM_TYPE = {
|
||||||
|
"text": 1,
|
||||||
|
"radio": 2,
|
||||||
|
"checkbox": 3,
|
||||||
|
"likert": 4,
|
||||||
|
"quick_answers": 5,
|
||||||
|
"scale": 6,
|
||||||
|
"datetime": 7,
|
||||||
|
"pam": 8,
|
||||||
|
"number": 9,
|
||||||
|
"web": 10,
|
||||||
|
"date": 11,
|
||||||
|
}
|
||||||
|
|
||||||
|
ESM_STATUS_ANSWERED = 2
|
||||||
|
|
||||||
|
GROUP_SESSIONS_BY = ["participant_id", "device_id", "esm_session"]
|
||||||
|
|
||||||
|
SESSION_STATUS_UNANSWERED = "ema_unanswered"
|
||||||
|
SESSION_STATUS_DAY_FINISHED = "day_finished"
|
||||||
|
SESSION_STATUS_COMPLETE = "ema_completed"
|
||||||
|
|
||||||
|
ANSWER_DAY_FINISHED = "DayFinished3421"
|
||||||
|
ANSWER_DAY_OFF = "DayOff3421"
|
||||||
|
ANSWER_SET_EVENING = "DayFinishedSetEvening"
|
||||||
|
|
||||||
|
MAX_MORNING_LENGTH = 3
|
||||||
|
# When the participants was not yet at work at the time of the first (morning) EMA,
|
||||||
|
# only three items were answered.
|
||||||
|
# Two sleep related items and one indicating NOT starting work yet.
|
||||||
|
# Daytime EMAs are all longer, in fact they always consist of at least 6 items.
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_esm(df_esm: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Convert timestamps into human-readable datetimes and dates
|
||||||
|
and expand the JSON column into several Pandas DF columns.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm: pd.DataFrame
|
||||||
|
A dataframe of esm data.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_preprocessed: pd.DataFrame
|
||||||
|
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
|
||||||
|
"""
|
||||||
|
df_esm_json = df_esm["esm_json"].apply(json.loads)
|
||||||
|
df_esm_json = pd.json_normalize(df_esm_json).drop(
|
||||||
|
columns=["esm_trigger"]
|
||||||
|
) # The esm_trigger column is already present in the main df.
|
||||||
|
return df_esm.join(df_esm_json)
|
||||||
|
|
||||||
|
|
||||||
|
def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
This function eliminates invalid ESM responses.
|
||||||
|
It removes unanswered ESMs and those that indicate end of work and similar.
|
||||||
|
It also extracts a numeric answer from strings such as "4 - I strongly agree".
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_preprocessed: pd.DataFrame
|
||||||
|
A preprocessed dataframe of esm data.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_clean: pd.DataFrame
|
||||||
|
A subset of the original dataframe.
|
||||||
|
|
||||||
|
"""
|
||||||
|
df_esm_clean = df_esm_preprocessed[
|
||||||
|
df_esm_preprocessed["esm_status"] == ESM_STATUS_ANSWERED
|
||||||
|
]
|
||||||
|
df_esm_clean = df_esm_clean[
|
||||||
|
~df_esm_clean["esm_user_answer"].isin(
|
||||||
|
[ANSWER_DAY_FINISHED, ANSWER_DAY_OFF, ANSWER_SET_EVENING]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
df_esm_clean["esm_user_answer_numeric"] = np.nan
|
||||||
|
esm_type_numeric = [
|
||||||
|
ESM_TYPE.get("radio"),
|
||||||
|
ESM_TYPE.get("scale"),
|
||||||
|
ESM_TYPE.get("number"),
|
||||||
|
]
|
||||||
|
df_esm_clean.loc[
|
||||||
|
df_esm_clean["esm_type"].isin(esm_type_numeric)
|
||||||
|
] = df_esm_clean.loc[df_esm_clean["esm_type"].isin(esm_type_numeric)].assign(
|
||||||
|
esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
|
||||||
|
int
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return df_esm_clean
|
||||||
|
|
||||||
|
|
||||||
|
df_esm = pd.read_csv(snakemake.input[0])
|
||||||
|
df_esm_preprocessed = preprocess_esm(df_esm)
|
||||||
|
#TODO Enable getting the right questionnaire here.
|
||||||
|
df_esm_PANAS = df_esm_preprocessed[
|
||||||
|
(df_esm_preprocessed["questionnaire_id"] == 8)
|
||||||
|
| (df_esm_preprocessed["questionnaire_id"] == 9)
|
||||||
|
]
|
||||||
|
df_esm_clean = clean_up_esm(df_esm_PANAS)
|
||||||
|
|
||||||
|
df_esm_clean.to_csv(snakemake.output[0])
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue