Preparation for the EDA features integration from CF.
parent
2da0911d4c
commit
d3a3f01f29
|
@ -9,55 +9,59 @@ import matplotlib.pyplot as plt
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.max_columns', None)
|
||||
|
||||
pathToEDACsv = "../example_data/EDA.csv"
|
||||
|
||||
pathToEDACsv = "../example_data/S2_E4_Data/EDA.csv"
|
||||
|
||||
# get an array of values from EDA empatica file
|
||||
eda_data, startTimeStamp_EDA, sampleRate_EDA = convert1DEmpaticaToArray(pathToEDACsv)
|
||||
eda_data = eda_data[:int(300000//sampleRate_EDA)]
|
||||
|
||||
windowLength_EDA = int(sampleRate_EDA*120)
|
||||
|
||||
# Convert the HRV data into 2D array
|
||||
eda_data_2D = convertInputInto2d(eda_data, windowLength_EDA)
|
||||
|
||||
df_EDA = pd.DataFrame()
|
||||
for row in eda_data_2D:
|
||||
current_result = {}
|
||||
current_result.update(gsr.extractGsrFeatures(row, sampleRate=int(sampleRate_EDA),featureNames=gsrFeatureNames))
|
||||
df_EDA = df_EDA.append(current_result, ignore_index=True)
|
||||
|
||||
no_interest = 131
|
||||
current_row = eda_data_2D[no_interest,]
|
||||
filtered_EDA = butter_lowpass_filter(current_row, 1.0, int(sampleRate_EDA), 6)
|
||||
|
||||
plt.figure()
|
||||
plt.plot(current_row, color='blue')
|
||||
plt.plot(filtered_EDA, color='red')
|
||||
plt.savefig('output_images/EDA_exa1.png')
|
||||
|
||||
gsr_data = pd.DataFrame(current_row, columns=["EDA"])
|
||||
startTime = pd.to_datetime(0, unit="s")
|
||||
gsr_data.index = pd.date_range(start=startTime, periods=len(gsr_data), freq=str(1000/sampleRate_EDA) + 'L')
|
||||
gsr_data['filtered_eda'] = filtered_EDA
|
||||
peakData = calcPeakFeatures(gsr_data, offset=1, thresh=.02, start_WT=4, end_WT=4, sampleRate=int(sampleRate_EDA))
|
||||
|
||||
peaks = np.where(peakData.peaks == 1.0)[0]
|
||||
peak_starts = np.where(peakData.peak_start == 1.0)[0]
|
||||
peak_ends = np.where(peakData.peak_end == 1.0)[0]
|
||||
print(peaks)
|
||||
print(peak_starts)
|
||||
print(peak_ends)
|
||||
|
||||
plt.figure()
|
||||
plt.plot(filtered_EDA, color='red')
|
||||
plt.scatter(peaks, filtered_EDA[peaks], color="green")
|
||||
plt.scatter(peak_starts, filtered_EDA[peak_starts], color="green", marker=">", alpha=0.5)
|
||||
plt.scatter(peak_ends, filtered_EDA[peak_ends], color="green", marker="s", alpha=0.5)
|
||||
plt.savefig('output_images/EDA_exa2.png')
|
||||
|
||||
print(df_EDA.loc[no_interest, df_EDA.columns.str.contains('Peak')])
|
||||
|
||||
calculatedFeatures_EDA = calculateFeatures(eda_data_2D, fs=int(sampleRate_EDA), featureNames=gsrFeatureNames)
|
||||
print(calculatedFeatures_EDA)
|
||||
|
||||
# df_EDA = pd.DataFrame()
|
||||
# for row in eda_data_2D:
|
||||
# current_result = {}
|
||||
# current_result.update(gsr.extractGsrFeatures(row, sampleRate=int(sampleRate_EDA),featureNames=gsrFeatureNames))
|
||||
# df_EDA = df_EDA.append(current_result, ignore_index=True)
|
||||
|
||||
# no_interest = 131
|
||||
# current_row = eda_data_2D[no_interest,]
|
||||
# filtered_EDA = butter_lowpass_filter(current_row, 1.0, int(sampleRate_EDA), 6)
|
||||
|
||||
# plt.figure()
|
||||
# plt.plot(current_row, color='blue')
|
||||
# plt.plot(filtered_EDA, color='red')
|
||||
# plt.savefig('output_images/EDA_exa1.png')
|
||||
|
||||
# gsr_data = pd.DataFrame(current_row, columns=["EDA"])
|
||||
# startTime = pd.to_datetime(0, unit="s")
|
||||
# gsr_data.index = pd.date_range(start=startTime, periods=len(gsr_data), freq=str(1000/sampleRate_EDA) + 'L')
|
||||
# gsr_data['filtered_eda'] = filtered_EDA
|
||||
# peakData = calcPeakFeatures(gsr_data, offset=1, thresh=.02, start_WT=4, end_WT=4, sampleRate=int(sampleRate_EDA))
|
||||
|
||||
# peaks = np.where(peakData.peaks == 1.0)[0]
|
||||
# peak_starts = np.where(peakData.peak_start == 1.0)[0]
|
||||
# peak_ends = np.where(peakData.peak_end == 1.0)[0]
|
||||
# print(peaks)
|
||||
# print(peak_starts)
|
||||
# print(peak_ends)
|
||||
|
||||
# plt.figure()
|
||||
# plt.plot(filtered_EDA, color='red')
|
||||
# plt.scatter(peaks, filtered_EDA[peaks], color="green")
|
||||
# plt.scatter(peak_starts, filtered_EDA[peak_starts], color="green", marker=">", alpha=0.5)
|
||||
# plt.scatter(peak_ends, filtered_EDA[peak_ends], color="green", marker="s", alpha=0.5)
|
||||
# plt.savefig('output_images/EDA_exa2.png')
|
||||
|
||||
# print(df_EDA.loc[no_interest, df_EDA.columns.str.contains('Peak')])
|
||||
|
||||
|
||||
|
|
|
@ -504,12 +504,12 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
|
|||
CONTAINER: EDA
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: False
|
||||
COMPUTE: True
|
||||
FEATURES: ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda", "diffminmodeeda", "entropyeda"]
|
||||
SRC_SCRIPT: src/features/empatica_electrodermal_activity/dbdp/main.py
|
||||
CF:
|
||||
COMPUTE: True
|
||||
FEATURES: ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda", "diffminmodeeda", "entropyeda"]
|
||||
FEATURES: ['mean', 'std', 'q25', 'q75', 'qd'] # To-Do add remaining features from CF helper file.
|
||||
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cf/main.py
|
||||
|
||||
# See https://www.rapids.science/latest/features/empatica-blood-volume-pulse/
|
||||
|
|
Loading…
Reference in New Issue