Reorganisation and reordering of the cleaning script.
parent
15d792089d
commit
d27a4a71c8
|
@ -688,7 +688,7 @@ ALL_CLEANING_INDIVIDUAL:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||||
COMPUTE: False
|
COMPUTE: False
|
||||||
TYPE: median # options: zero, mean, median or k-nearest
|
TYPE: zero # options: zero, mean, median or k-nearest
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||||
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
|
@ -723,7 +723,7 @@ ALL_CLEANING_OVERALL:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
|
||||||
COMPUTE: False
|
COMPUTE: False
|
||||||
TYPE: median # options: zero, mean, median or k-nearest
|
TYPE: zero # options: zero, mean, median or k-nearest
|
||||||
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
|
||||||
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
|
|
|
@ -4,25 +4,26 @@ import math, sys
|
||||||
import yaml
|
import yaml
|
||||||
|
|
||||||
from sklearn.impute import KNNImputer
|
from sklearn.impute import KNNImputer
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
|
|
||||||
def straw_cleaning(sensor_data_files, provider):
|
def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
||||||
|
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
|
|
||||||
with open('config.yaml', 'r') as stream:
|
with open('config.yaml', 'r') as stream:
|
||||||
config = yaml.load(stream, Loader=yaml.FullLoader)
|
config = yaml.load(stream, Loader=yaml.FullLoader)
|
||||||
|
|
||||||
#Filter-out all rows that do not have the target column available
|
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||||
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index()
|
features = features[features['phone_esm_straw_' + target].notna()].reset_index()
|
||||||
|
|
||||||
test_cols = [col for col in features.columns if 'phone_calls' in col or 'phone_messages' in col]
|
test_cols = [col for col in features.columns if 'phone_calls' in col or 'phone_messages' in col]
|
||||||
|
|
||||||
|
|
||||||
# TODO: reorder the cleaning steps so it makes sense for the analysis
|
# TODO: reorder the cleaning steps so it makes sense for the analysis
|
||||||
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
|
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
|
||||||
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
|
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
|
||||||
|
@ -36,7 +37,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
# because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN
|
# because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN
|
||||||
# values still exist.
|
# values still exist.
|
||||||
|
|
||||||
# Impute selected features event
|
# (2) PARTIAL IMPUTATION: IMPUTE DATA DEPENDEND ON THE FEATURES GROUP (e.g., phone or E4 features)
|
||||||
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
||||||
if impute_phone_features["COMPUTE"]:
|
if impute_phone_features["COMPUTE"]:
|
||||||
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
||||||
|
@ -55,7 +56,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
||||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
||||||
|
|
||||||
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
|
# ??? Drop rows with the value of data_yield_column less than data_yield_ratio_threshold ???
|
||||||
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
|
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||||
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
|
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
|
||||||
|
|
||||||
|
@ -65,10 +66,10 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
|
||||||
|
|
||||||
# Remove cols if threshold of NaN values is passed (should be <= if even all NaN columns must be preserved)
|
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved)
|
||||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||||
|
|
||||||
# Remove cols where variance is 0
|
# (4) REMOVE COLS WHERE VARIANCE IS 0
|
||||||
if provider["COLS_VAR_THRESHOLD"]:
|
if provider["COLS_VAR_THRESHOLD"]:
|
||||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||||
|
|
||||||
|
@ -77,7 +78,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if esm not in features:
|
if esm not in features:
|
||||||
features[esm] = esm_cols[esm]
|
features[esm] = esm_cols[esm]
|
||||||
|
|
||||||
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
|
# (5) DROP HIGHLY CORRELATED FEATURES
|
||||||
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
||||||
if drop_corr_features["COMPUTE"]:
|
if drop_corr_features["COMPUTE"]:
|
||||||
|
|
||||||
|
@ -98,7 +99,26 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
sns.heatmap(features.isna(), cbar=False)
|
sns.heatmap(features.isna(), cbar=False)
|
||||||
plt.savefig(f'features_nans.png', bbox_inches='tight')
|
plt.savefig(f'features_nans_bf_knn.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
# KNN IMPUTATION
|
||||||
|
features = impute(features, method="knn")
|
||||||
|
|
||||||
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
|
sns.heatmap(features.isna(), cbar=False)
|
||||||
|
plt.savefig(f'features_nans_af_knn.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
|
||||||
|
## STANDARDIZATION - should it happen before or after kNN imputation?
|
||||||
|
# TODO: check if there are additional columns that need to be excluded from the standardization
|
||||||
|
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||||
|
excluded_columns += [col for col in features.columns if "level_1" in col]
|
||||||
|
|
||||||
|
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||||
|
|
||||||
|
# VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||||
|
if features.isna.any().any():
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
|
@ -106,14 +126,14 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
def impute(df, method='zero'):
|
def impute(df, method='zero'):
|
||||||
|
|
||||||
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
|
def k_nearest(df):
|
||||||
imputer = KNNImputer(n_neighbors=3)
|
imputer = KNNImputer(n_neighbors=3)
|
||||||
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
|
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
|
||||||
|
|
||||||
return { # rest of the columns should be imputed with the selected method
|
return {
|
||||||
'zero': df.fillna(0),
|
'zero': df.fillna(0),
|
||||||
'mean': df.fillna(df.mean()),
|
'mean': df.fillna(df.mean()),
|
||||||
'median': df.fillna(df.median()),
|
'median': df.fillna(df.median()),
|
||||||
'k-nearest': k_nearest(df)
|
'knn': k_nearest(df)
|
||||||
}[method]
|
}[method]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue