Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning
commit
cea451d344
|
@ -3,7 +3,7 @@
|
||||||
########################################################################################################################
|
########################################################################################################################
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||||
PIDS: ['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
PIDS: ['p03'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||||
CREATE_PARTICIPANT_FILES:
|
CREATE_PARTICIPANT_FILES:
|
||||||
|
@ -21,9 +21,12 @@ CREATE_PARTICIPANT_FILES:
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#time-segments
|
# See https://www.rapids.science/latest/setup/configuration/#time-segments
|
||||||
TIME_SEGMENTS: &time_segments
|
TIME_SEGMENTS: &time_segments
|
||||||
TYPE: PERIODIC # FREQUENCY, PERIODIC, EVENT
|
TYPE: EVENT # FREQUENCY, PERIODIC, EVENT
|
||||||
FILE: "data/external/timesegments_daily.csv"
|
FILE: "data/external/straw_events.csv"
|
||||||
INCLUDE_PAST_PERIODIC_SEGMENTS: TRUE # Only relevant if TYPE=PERIODIC, see docs
|
INCLUDE_PAST_PERIODIC_SEGMENTS: TRUE # Only relevant if TYPE=PERIODIC, see docs
|
||||||
|
TAILORED_EVENTS: # Only relevant if TYPE=EVENT
|
||||||
|
COMPUTE: True
|
||||||
|
PARAMETER_ONE: "something"
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study
|
# See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study
|
||||||
TIMEZONE:
|
TIMEZONE:
|
||||||
|
|
|
@ -249,3 +249,26 @@ rule empatica_readable_datetime:
|
||||||
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
|
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
|
||||||
script:
|
script:
|
||||||
"../src/data/datetime/readable_datetime.R"
|
"../src/data/datetime/readable_datetime.R"
|
||||||
|
|
||||||
|
|
||||||
|
rule extract_event_information_from_esm:
|
||||||
|
input:
|
||||||
|
esm_raw_input = "data/raw/{pid}/phone_esm_raw.csv",
|
||||||
|
pid_file = "data/external/participant_files/{pid}.yaml"
|
||||||
|
params:
|
||||||
|
stage = "extract",
|
||||||
|
pid = "{pid}"
|
||||||
|
output:
|
||||||
|
"data/raw/ers/{pid}_ers.csv"
|
||||||
|
script:
|
||||||
|
"../src/features/phone_esm/straw/process_user_event_related_segments.py"
|
||||||
|
|
||||||
|
rule create_event_related_segments_file:
|
||||||
|
input:
|
||||||
|
ers_files = expand("data/raw/ers/{pid}_ers.csv", pid=config["PIDS"])
|
||||||
|
params:
|
||||||
|
stage = "merge"
|
||||||
|
output:
|
||||||
|
"data/external/straw_events.csv"
|
||||||
|
script:
|
||||||
|
"../src/features/phone_esm/straw/process_user_event_related_segments.py"
|
|
@ -100,7 +100,7 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
col.startswith('phone_screen_rapids_') or
|
col.startswith('phone_screen_rapids_') or
|
||||||
col.startswith('phone_wifi_visible')]
|
col.startswith('phone_wifi_visible')]
|
||||||
|
|
||||||
features[impute_zero] = impute(features[impute_zero], method="zero")
|
features[impute_zero+list(esm_cols.columns)] = features[impute_zero+list(esm_cols.columns)].fillna(0)
|
||||||
|
|
||||||
## (5) STANDARDIZATION
|
## (5) STANDARDIZATION
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
|
|
|
@ -16,6 +16,9 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
|
|
||||||
features = features[features['local_segment_label'] == 'working_day'] # Filtriranje ustreznih časovnih segmentov
|
features = features[features['local_segment_label'] == 'working_day'] # Filtriranje ustreznih časovnih segmentov
|
||||||
|
|
||||||
|
# print(features)
|
||||||
|
# sys.exit()
|
||||||
|
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
|
|
||||||
with open('config.yaml', 'r') as stream:
|
with open('config.yaml', 'r') as stream:
|
||||||
|
@ -29,7 +32,11 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
||||||
|
|
||||||
|
if features.empty:
|
||||||
|
return pd.DataFrame(columns=excluded_columns)
|
||||||
|
|
||||||
graph_bf_af(features, "2target_rows_after")
|
graph_bf_af(features, "2target_rows_after")
|
||||||
|
print("HERE1", target, features["pid"])
|
||||||
|
|
||||||
# (2) QUALITY CHECK (DATA YIELD COLUMN) drops the rows where E4 or phone data is low quality
|
# (2) QUALITY CHECK (DATA YIELD COLUMN) drops the rows where E4 or phone data is low quality
|
||||||
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||||
|
@ -41,13 +48,12 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
hist = features[["empatica_data_yield", phone_data_yield_column]].hist()
|
hist = features[["empatica_data_yield", phone_data_yield_column]].hist()
|
||||||
plt.legend()
|
|
||||||
plt.savefig(f'phone_E4_histogram.png', bbox_inches='tight')
|
plt.savefig(f'phone_E4_histogram.png', bbox_inches='tight')
|
||||||
|
|
||||||
# Drop rows where phone data yield is less then given threshold
|
# Drop rows where phone data yield is less then given threshold
|
||||||
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
print("\nThreshold:", provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"])
|
# print("\nThreshold:", provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"])
|
||||||
print("Phone features data yield stats:", features[phone_data_yield_column].describe(), "\n")
|
# print("Phone features data yield stats:", features[phone_data_yield_column].describe(), "\n")
|
||||||
# print(features[phone_data_yield_column].sort_values())
|
# print(features[phone_data_yield_column].sort_values())
|
||||||
hist = features[phone_data_yield_column].hist(bins=5)
|
hist = features[phone_data_yield_column].hist(bins=5)
|
||||||
plt.close()
|
plt.close()
|
||||||
|
@ -55,13 +61,17 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
|
|
||||||
# Drop rows where empatica data yield is less then given threshold
|
# Drop rows where empatica data yield is less then given threshold
|
||||||
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
print("\nThreshold:", provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"])
|
# print("\nThreshold:", provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"])
|
||||||
print("E4 features data yield stats:", features["empatica_data_yield"].describe(), "\n")
|
# print("E4 features data yield stats:", features["empatica_data_yield"].describe(), "\n")
|
||||||
# print(features["empatica_data_yield"].sort_values())
|
# print(features["empatica_data_yield"].sort_values())
|
||||||
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
||||||
|
|
||||||
|
|
||||||
graph_bf_af(features, "3data_yield_drop_rows")
|
graph_bf_af(features, "3data_yield_drop_rows")
|
||||||
|
|
||||||
|
if features.empty:
|
||||||
|
return pd.DataFrame(columns=excluded_columns)
|
||||||
|
|
||||||
# (3) CONTEXTUAL IMPUTATION
|
# (3) CONTEXTUAL IMPUTATION
|
||||||
|
|
||||||
# Impute selected phone features with a high number
|
# Impute selected phone features with a high number
|
||||||
|
@ -85,7 +95,7 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
|
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
|
||||||
features[impute_w_sn2] = features[impute_w_sn2].fillna(-1000000) # Special case of imputation - loglocation
|
features[impute_w_sn2] = features[impute_w_sn2].fillna(-1000000) # Special case of imputation - loglocation
|
||||||
|
|
||||||
# Impute selected phone features with 0
|
# Impute selected phone features with 0 + impute ESM features with 0
|
||||||
impute_zero = [col for col in features if \
|
impute_zero = [col for col in features if \
|
||||||
col.startswith('phone_applications_foreground_rapids_') or
|
col.startswith('phone_applications_foreground_rapids_') or
|
||||||
col.startswith('phone_battery_rapids_') or
|
col.startswith('phone_battery_rapids_') or
|
||||||
|
@ -95,23 +105,23 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
col.startswith('phone_messages_rapids_') or
|
col.startswith('phone_messages_rapids_') or
|
||||||
col.startswith('phone_screen_rapids_') or
|
col.startswith('phone_screen_rapids_') or
|
||||||
col.startswith('phone_wifi_visible')]
|
col.startswith('phone_wifi_visible')]
|
||||||
features[impute_zero] = impute(features[impute_zero], method="zero")
|
|
||||||
|
|
||||||
graph_bf_af(features, "5zero_imp")
|
features[impute_zero+list(esm_cols.columns)] = features[impute_zero+list(esm_cols.columns)].fillna(0)
|
||||||
|
|
||||||
|
graph_bf_af(features, "4context_imp")
|
||||||
|
|
||||||
# (4) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
# (4) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
|
|
||||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||||
|
|
||||||
graph_bf_af(features, "6too_much_nans_cols")
|
graph_bf_af(features, "5too_much_nans_cols")
|
||||||
|
|
||||||
# (5) REMOVE COLS WHERE VARIANCE IS 0
|
# (5) REMOVE COLS WHERE VARIANCE IS 0
|
||||||
|
|
||||||
if provider["COLS_VAR_THRESHOLD"]:
|
if provider["COLS_VAR_THRESHOLD"]:
|
||||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||||
|
|
||||||
graph_bf_af(features, "7variance_drop")
|
graph_bf_af(features, "6variance_drop")
|
||||||
|
|
||||||
# Preserve esm cols if deleted (has to come after drop cols operations)
|
# Preserve esm cols if deleted (has to come after drop cols operations)
|
||||||
for esm in esm_cols:
|
for esm in esm_cols:
|
||||||
|
@ -122,9 +132,13 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||||
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
|
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
|
||||||
|
|
||||||
graph_bf_af(features, "8too_much_nans_rows")
|
graph_bf_af(features, "7too_much_nans_rows")
|
||||||
|
|
||||||
# (7) STANDARDIZATION
|
if features.empty:
|
||||||
|
return pd.DataFrame(columns=excluded_columns)
|
||||||
|
|
||||||
|
|
||||||
|
# (7) STANDARDIZATION TODO: exclude nominal features from standardization
|
||||||
|
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
# Expected warning within this code block
|
# Expected warning within this code block
|
||||||
|
@ -133,14 +147,15 @@ def straw_cleaning(sensor_data_files, provider, target):
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"])] = \
|
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"])] = \
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns)].groupby('pid').transform(lambda x: StandardScaler().fit_transform(x.values[:,np.newaxis]).ravel())
|
features.loc[:, ~features.columns.isin(excluded_columns)].groupby('pid').transform(lambda x: StandardScaler().fit_transform(x.values[:,np.newaxis]).ravel())
|
||||||
|
|
||||||
graph_bf_af(features, "9standardization")
|
graph_bf_af(features, "8standardization")
|
||||||
|
|
||||||
# (8) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
# (8) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
||||||
features.reset_index(drop=True, inplace=True)
|
features.reset_index(drop=True, inplace=True)
|
||||||
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
|
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
|
||||||
|
|
||||||
features[impute_cols] = impute(features[impute_cols], method="knn")
|
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||||
|
|
||||||
graph_bf_af(features, "10knn_after")
|
graph_bf_af(features, "9knn_after")
|
||||||
|
|
||||||
|
|
||||||
# (9) DROP HIGHLY CORRELATED FEATURES
|
# (9) DROP HIGHLY CORRELATED FEATURES
|
||||||
|
|
|
@ -0,0 +1,60 @@
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
import math, sys, yaml
|
||||||
|
|
||||||
|
from esm_preprocess import preprocess_esm, clean_up_esm
|
||||||
|
|
||||||
|
input_data_files = dict(snakemake.input)
|
||||||
|
|
||||||
|
def extract_ers_from_file(esm_df, device_id): # TODO: kako se bodo pridobili device_id? Bo torej potreben tudi p0??.yaml?
|
||||||
|
|
||||||
|
pd.set_option("display.max_rows", None)
|
||||||
|
|
||||||
|
# extracted_ers = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
|
||||||
|
|
||||||
|
esm_df = clean_up_esm(preprocess_esm(esm_df))
|
||||||
|
|
||||||
|
# Take only during work sessions
|
||||||
|
during_work = esm_df[esm_df["esm_trigger"].str.contains("during_work", na=False)]
|
||||||
|
esm_trigger_group = esm_df.groupby("esm_session").agg(pd.Series.mode)['esm_trigger'] # Get most frequent esm_trigger within particular session
|
||||||
|
esm_filtered_sessions = list(esm_trigger_group[esm_trigger_group == 'during_work'].index) # Take only sessions that contains during work
|
||||||
|
esm_df = esm_df[esm_df["esm_session"].isin(esm_filtered_sessions)]
|
||||||
|
|
||||||
|
# Extract time-relevant information
|
||||||
|
extracted_ers = esm_df.groupby("esm_session")['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # in rounded up seconds
|
||||||
|
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
|
||||||
|
|
||||||
|
extracted_ers["label"] = "straw_event_" + snakemake.params["pid"] + "_" + extracted_ers["esm_session"].astype(str)
|
||||||
|
extracted_ers["event_timestamp"] = esm_df.groupby("esm_session")['timestamp'].min().reset_index()['timestamp']
|
||||||
|
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: f"{x//3600}H {x % 3600 // 60}M {x % 60}S" if x//3600 > 0 else f"{x % 3600 // 60}M {x % 60}S")
|
||||||
|
extracted_ers["shift"] = time_before_questionnaire
|
||||||
|
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: f"{x//3600}H {x % 3600 // 60}M {x % 60}S" if x//3600 > 0 else f"{x % 3600 // 60}M {x % 60}S")
|
||||||
|
extracted_ers["shift_direction"] = -1
|
||||||
|
extracted_ers["device_id"] = device_id
|
||||||
|
|
||||||
|
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
|
||||||
|
|
||||||
|
# TODO: potrebno preveriti kako se izvaja iskanje prek device_id -> na tem temelji tudi proces ekstrahiranja ERS
|
||||||
|
|
||||||
|
if snakemake.params["stage"] == "extract": # TODO: najprej preveri ustreznost umeščenosti v RAPIDS pipelineu
|
||||||
|
esm_df = pd.read_csv(input_data_files['esm_raw_input'])
|
||||||
|
|
||||||
|
with open(input_data_files['pid_file'], 'r') as stream:
|
||||||
|
pid_file = yaml.load(stream, Loader=yaml.FullLoader)
|
||||||
|
|
||||||
|
extracted_ers = extract_ers_from_file(esm_df, pid_file["PHONE"]["DEVICE_IDS"][0])
|
||||||
|
|
||||||
|
extracted_ers.to_csv(snakemake.output[0], index=False)
|
||||||
|
elif snakemake.params["stage"] == "merge":
|
||||||
|
|
||||||
|
input_data_files = dict(snakemake.input)
|
||||||
|
straw_events = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
|
||||||
|
|
||||||
|
for input_file in input_data_files["ers_files"]:
|
||||||
|
ers_df = pd.read_csv(input_file)
|
||||||
|
straw_events = pd.concat([straw_events, ers_df], axis=0, ignore_index=True)
|
||||||
|
|
||||||
|
straw_events.to_csv(snakemake.output[0], index=False)
|
||||||
|
|
|
@ -12,9 +12,13 @@ for baseline_features_path in snakemake.input["demographic_features"]:
|
||||||
all_baseline_features = pd.concat([all_baseline_features, baseline_features], axis=0)
|
all_baseline_features = pd.concat([all_baseline_features, baseline_features], axis=0)
|
||||||
|
|
||||||
# merge sensor features and baseline features
|
# merge sensor features and baseline features
|
||||||
|
if not sensor_features.empty:
|
||||||
features = sensor_features.merge(all_baseline_features, on="pid", how="left")
|
features = sensor_features.merge(all_baseline_features, on="pid", how="left")
|
||||||
|
|
||||||
target_variable_name = snakemake.params["target_variable"]
|
target_variable_name = snakemake.params["target_variable"]
|
||||||
model_input = retain_target_column(features, target_variable_name)
|
model_input = retain_target_column(features, target_variable_name)
|
||||||
|
|
||||||
model_input.to_csv(snakemake.output[0], index=False)
|
model_input.to_csv(snakemake.output[0], index=False)
|
||||||
|
|
||||||
|
else:
|
||||||
|
sensor_features.to_csv(snakemake.output[0], index=False)
|
||||||
|
|
Loading…
Reference in New Issue