Add stats features for empatica heartrate
Turn off all empatica compute featuresfeature/plugin_sentimental
parent
3bb0230bac
commit
c6dc7e675a
12
Snakefile
12
Snakefile
|
@ -307,12 +307,12 @@ for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
|
||||||
suffixes = get_zip_suffixes(pid)
|
suffixes = get_zip_suffixes(pid)
|
||||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_unzipped_{suffix}.csv", pid=pid, suffix=suffixes))
|
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_unzipped_{suffix}.csv", pid=pid, suffix=suffixes))
|
||||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_raw_{suffix}.csv", pid=pid, suffix=suffixes))
|
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_raw_{suffix}.csv", pid=pid, suffix=suffixes))
|
||||||
# files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_joined.csv", pid=config["PIDS"]))
|
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_joined.csv", pid=config["PIDS"]))
|
||||||
# files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_with_datetime.csv", pid=config["PIDS"]))
|
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_with_datetime.csv", pid=config["PIDS"]))
|
||||||
# files_to_compute.extend(expand("data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
files_to_compute.extend(expand("data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||||
# files_to_compute.extend(expand("data/processed/features/{pid}/empatica_heartrate.csv", pid=config["PIDS"]))
|
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_heartrate.csv", pid=config["PIDS"]))
|
||||||
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||||
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||||
|
|
||||||
for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
|
for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
|
||||||
if config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["COMPUTE"]:
|
if config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||||
|
|
14
config.yaml
14
config.yaml
|
@ -7,7 +7,7 @@ TIMEZONE: &timezone
|
||||||
America/New_York
|
America/New_York
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||||
PIDS: [e01]
|
PIDS: [e03]
|
||||||
|
|
||||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||||
CREATE_PARTICIPANT_FILES:
|
CREATE_PARTICIPANT_FILES:
|
||||||
|
@ -436,8 +436,8 @@ EMPATICA_HEARTRATE:
|
||||||
TABLE: hr
|
TABLE: hr
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
DBDP:
|
DBDP:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FEATURES: []
|
FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr"]
|
||||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||||
SRC_LANGUAGE: "python"
|
SRC_LANGUAGE: "python"
|
||||||
|
|
||||||
|
@ -445,7 +445,7 @@ EMPATICA_TEMPERATURE:
|
||||||
TABLE: temp
|
TABLE: temp
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
DBDP:
|
DBDP:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FEATURES: []
|
FEATURES: []
|
||||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||||
SRC_LANGUAGE: "python"
|
SRC_LANGUAGE: "python"
|
||||||
|
@ -454,7 +454,7 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
|
||||||
TABLE: eda
|
TABLE: eda
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
DBDP:
|
DBDP:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FEATURES: []
|
FEATURES: []
|
||||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||||
SRC_LANGUAGE: "python"
|
SRC_LANGUAGE: "python"
|
||||||
|
@ -463,7 +463,7 @@ EMPATICA_BLOOD_VOLUME_PULSE:
|
||||||
TABLE: bvp
|
TABLE: bvp
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
DBDP:
|
DBDP:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FEATURES: []
|
FEATURES: []
|
||||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||||
SRC_LANGUAGE: "python"
|
SRC_LANGUAGE: "python"
|
||||||
|
@ -472,7 +472,7 @@ EMPATICA_INTER_BEAT_INTERVAL:
|
||||||
TABLE: ibi
|
TABLE: ibi
|
||||||
PROVIDERS:
|
PROVIDERS:
|
||||||
DBDP:
|
DBDP:
|
||||||
COMPUTE: True
|
COMPUTE: False
|
||||||
FEATURES: []
|
FEATURES: []
|
||||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||||
SRC_LANGUAGE: "python"
|
SRC_LANGUAGE: "python"
|
||||||
|
|
|
@ -1,21 +1,59 @@
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
from scipy.stats import entropy
|
||||||
|
|
||||||
|
def statsFeatures(heartrate_data, features, heartrate_features):
|
||||||
|
|
||||||
|
col_name = "heartrate"
|
||||||
|
if "sumhr" in features:
|
||||||
|
heartrate_features["sumhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].sum()
|
||||||
|
if "maxhr" in features:
|
||||||
|
heartrate_features["maxhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max()
|
||||||
|
if "minhr" in features:
|
||||||
|
heartrate_features["minhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
|
||||||
|
if "avghr" in features:
|
||||||
|
heartrate_features["avghr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].mean()
|
||||||
|
if "medianhr" in features:
|
||||||
|
heartrate_features["medianhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].median()
|
||||||
|
if "modehr" in features:
|
||||||
|
heartrate_features["modehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||||
|
if "stdhr" in features:
|
||||||
|
heartrate_features["stdhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].std()
|
||||||
|
if "diffmaxmodehr" in features:
|
||||||
|
heartrate_features["diffmaxmodehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max() - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||||
|
if "diffminmodehr" in features:
|
||||||
|
heartrate_features["diffminmodehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0]) - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
|
||||||
|
if "entropyhr" in features:
|
||||||
|
heartrate_features["entropyhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(entropy)
|
||||||
|
|
||||||
|
return heartrate_features
|
||||||
|
|
||||||
|
def extractHRFeaturesFromIntradayData(heartrate_intraday_data, features, time_segment, filter_data_by_segment):
|
||||||
|
heartrate_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
|
||||||
|
if not heartrate_intraday_data.empty:
|
||||||
|
heartrate_intraday_data = filter_data_by_segment(heartrate_intraday_data, time_segment)
|
||||||
|
|
||||||
|
if not heartrate_intraday_data.empty:
|
||||||
|
heartrate_intraday_features = pd.DataFrame()
|
||||||
|
|
||||||
|
# get stats of heartrate
|
||||||
|
heartrate_intraday_features = statsFeatures(heartrate_intraday_data, features, heartrate_intraday_features)
|
||||||
|
|
||||||
|
heartrate_intraday_features.reset_index(inplace=True)
|
||||||
|
|
||||||
|
return heartrate_intraday_features
|
||||||
|
|
||||||
|
|
||||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||||
|
|
||||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
heartrate_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||||
requested_features = provider["FEATURES"]
|
|
||||||
|
requested_intraday_features = provider["FEATURES"]
|
||||||
# name of the features this function can compute
|
# name of the features this function can compute
|
||||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
base_intraday_features_names = ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr"]
|
||||||
# the subset of requested features this function can compute
|
# the subset of requested features this function can compute
|
||||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
|
||||||
|
|
||||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
# extract features from intraday data
|
||||||
if not sensor_data.empty:
|
heartrate_intraday_features = extractHRFeaturesFromIntradayData(heartrate_intraday_data, intraday_features_to_compute, time_segment, filter_data_by_segment)
|
||||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
|
||||||
|
return heartrate_intraday_features
|
||||||
if not sensor_data.empty:
|
|
||||||
features = pd.DataFrame()
|
|
||||||
|
|
||||||
|
|
||||||
return features
|
|
||||||
|
|
Loading…
Reference in New Issue