Add stats features for empatica heartrate
Turn off all empatica compute featuresfeature/plugin_sentimental
parent
3bb0230bac
commit
c6dc7e675a
12
Snakefile
12
Snakefile
|
@ -307,12 +307,12 @@ for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
|
|||
suffixes = get_zip_suffixes(pid)
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_unzipped_{suffix}.csv", pid=pid, suffix=suffixes))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_raw_{suffix}.csv", pid=pid, suffix=suffixes))
|
||||
# files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_joined.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_with_datetime.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
# files_to_compute.extend(expand("data/processed/features/{pid}/empatica_heartrate.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_joined.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_heartrate.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
|
|
14
config.yaml
14
config.yaml
|
@ -7,7 +7,7 @@ TIMEZONE: &timezone
|
|||
America/New_York
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||
PIDS: [e01]
|
||||
PIDS: [e03]
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||
CREATE_PARTICIPANT_FILES:
|
||||
|
@ -436,8 +436,8 @@ EMPATICA_HEARTRATE:
|
|||
TABLE: hr
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
COMPUTE: False
|
||||
FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr"]
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
|
@ -445,7 +445,7 @@ EMPATICA_TEMPERATURE:
|
|||
TABLE: temp
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
@ -454,7 +454,7 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
|
|||
TABLE: eda
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
@ -463,7 +463,7 @@ EMPATICA_BLOOD_VOLUME_PULSE:
|
|||
TABLE: bvp
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
@ -472,7 +472,7 @@ EMPATICA_INTER_BEAT_INTERVAL:
|
|||
TABLE: ibi
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
COMPUTE: False
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
|
|
@ -1,21 +1,59 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
from scipy.stats import entropy
|
||||
|
||||
def statsFeatures(heartrate_data, features, heartrate_features):
|
||||
|
||||
col_name = "heartrate"
|
||||
if "sumhr" in features:
|
||||
heartrate_features["sumhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].sum()
|
||||
if "maxhr" in features:
|
||||
heartrate_features["maxhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max()
|
||||
if "minhr" in features:
|
||||
heartrate_features["minhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
|
||||
if "avghr" in features:
|
||||
heartrate_features["avghr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].mean()
|
||||
if "medianhr" in features:
|
||||
heartrate_features["medianhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].median()
|
||||
if "modehr" in features:
|
||||
heartrate_features["modehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||
if "stdhr" in features:
|
||||
heartrate_features["stdhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].std()
|
||||
if "diffmaxmodehr" in features:
|
||||
heartrate_features["diffmaxmodehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max() - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
|
||||
if "diffminmodehr" in features:
|
||||
heartrate_features["diffminmodehr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0]) - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
|
||||
if "entropyhr" in features:
|
||||
heartrate_features["entropyhr"] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(entropy)
|
||||
|
||||
return heartrate_features
|
||||
|
||||
def extractHRFeaturesFromIntradayData(heartrate_intraday_data, features, time_segment, filter_data_by_segment):
|
||||
heartrate_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
|
||||
if not heartrate_intraday_data.empty:
|
||||
heartrate_intraday_data = filter_data_by_segment(heartrate_intraday_data, time_segment)
|
||||
|
||||
if not heartrate_intraday_data.empty:
|
||||
heartrate_intraday_features = pd.DataFrame()
|
||||
|
||||
# get stats of heartrate
|
||||
heartrate_intraday_features = statsFeatures(heartrate_intraday_data, features, heartrate_intraday_features)
|
||||
|
||||
heartrate_intraday_features.reset_index(inplace=True)
|
||||
|
||||
return heartrate_intraday_features
|
||||
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
heartrate_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
|
||||
requested_intraday_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
base_intraday_features_names = ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
||||
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
|
||||
|
||||
# extract features from intraday data
|
||||
heartrate_intraday_features = extractHRFeaturesFromIntradayData(heartrate_intraday_data, intraday_features_to_compute, time_segment, filter_data_by_segment)
|
||||
|
||||
return heartrate_intraday_features
|
||||
|
|
Loading…
Reference in New Issue