Updated G_A_R features with epochs
parent
f7be15ea9e
commit
c5a0c1e0d6
|
@ -21,7 +21,8 @@ rule all:
|
|||
expand("data/processed/{pid}/bluetooth_{segment}.csv",
|
||||
pid=config["PIDS"],
|
||||
segment = config["BLUETOOTH"]["DAY_SEGMENTS"]),
|
||||
expand("data/processed/{pid}/google_activity_recognition.csv",pid=config["PIDS"]),
|
||||
expand("data/processed/{pid}/google_activity_recognition_{segment}.csv",pid=config["PIDS"],
|
||||
segment = config["GOOGLE_ACTIVITY_RECOGNITION"]["DAY_SEGMENTS"]),
|
||||
expand("data/processed/{pid}/battery_daily.csv", pid=config["PIDS"]),
|
||||
# Reports
|
||||
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
|
||||
|
|
|
@ -53,3 +53,7 @@ BARNETT_LOCATION:
|
|||
BLUETOOTH:
|
||||
DAY_SEGMENTS: *day_segments
|
||||
METRICS: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
|
||||
|
||||
GOOGLE_ACTIVITY_RECOGNITION:
|
||||
DAY_SEGMENTS: *day_segments
|
||||
METRICS: ['count','most_common_activity','number_unique_activities','activity_change_count']
|
||||
|
|
|
@ -55,8 +55,11 @@ rule bluetooth_metrics:
|
|||
rule activity_metrics:
|
||||
input:
|
||||
"data/raw/{pid}/plugin_google_activity_recognition_with_datetime.csv"
|
||||
params:
|
||||
segment = "{day_segment}",
|
||||
metrics = config["GOOGLE_ACTIVITY_RECOGNITION"]["METRICS"]
|
||||
output:
|
||||
"data/processed/{pid}/google_activity_recognition.csv"
|
||||
"data/processed/{pid}/google_activity_recognition_{day_segment}.csv"
|
||||
script:
|
||||
"../src/features/google_activity_recognition.py"
|
||||
|
||||
|
|
|
@ -2,51 +2,37 @@ import pandas as pd
|
|||
import numpy as np
|
||||
import scipy.stats as stats
|
||||
|
||||
day_segment = snakemake.params["segment"]
|
||||
|
||||
#Read csv into a pandas dataframe
|
||||
data = pd.read_csv(snakemake.input[0])
|
||||
column = ['local_date_time','count','most_common_activity','number_unique_activities','activity_change_count']
|
||||
finalDataset = pd.DataFrame(columns=column)
|
||||
finalDataset.set_index('local_date_time',inplace=True)
|
||||
columns = ['count','most_common_activity','count_unique_activities','activity_change_count']
|
||||
columns = list("ar_" + str(day_segment) + "_" + column for column in columns)
|
||||
|
||||
if data.empty:
|
||||
finalDataset.to_csv(snakemake.output[0])
|
||||
|
||||
finalDataset = pd.DataFrame(columns = columns)
|
||||
else:
|
||||
#Resampling each of the required features as a pandas series
|
||||
data.local_date_time = pd.to_datetime(data.local_date_time)
|
||||
resampledData = data.set_index(data.local_date_time)
|
||||
resampledData = resampledData[~resampledData.index.duplicated()]
|
||||
resampledData.rename_axis('time',axis='columns',inplace=True)
|
||||
resampledData.drop(columns=['local_date_time'],inplace=True)
|
||||
|
||||
#Finding count grouped by day
|
||||
count = pd.DataFrame()
|
||||
if(day_segment!='daily'):
|
||||
resampledData = resampledData.loc[resampledData['local_day_segment'] == str(day_segment)]
|
||||
|
||||
count = resampledData['activity_type'].resample('D').count()
|
||||
count = count.rename(columns={"activity_type":"count"})
|
||||
|
||||
#Finding most common activity of the day
|
||||
mostCommonActivity = pd.DataFrame()
|
||||
mostCommonActivity = resampledData['activity_type'].resample('D').apply(lambda x:stats.mode(x)[0])
|
||||
mostCommonActivity = mostCommonActivity.rename(columns={'activity_type':'most_common_activity'})
|
||||
|
||||
#finding different number of activities during a day
|
||||
uniqueActivities = pd.DataFrame()
|
||||
# countChanges = resampledData.to_period('D').groupby(resampledData.index)['activity_type'].value_counts()
|
||||
uniqueActivities = resampledData['activity_type'].resample('D').nunique()
|
||||
|
||||
#finding Number of times activity changed
|
||||
resampledData['activity_type_shift'] = resampledData['activity_type'].shift()
|
||||
resampledData['activity_type_shift'].fillna(resampledData['activity_type'].head(1),inplace=True)
|
||||
#resampledData['different_activity'] = resampledData['activity_type'].apply(lambda x: 0 if resampledData['activity_type'] == resampledData['activity_type_shift'] else 1, axis=1)
|
||||
resampledData['activity_type_shift'] = resampledData['activity_type'].shift().fillna(resampledData['activity_type'].head(1),inplace=True)
|
||||
resampledData['different_activity'] = np.where(resampledData['activity_type']!=resampledData['activity_type_shift'],1,0)
|
||||
countChanges = pd.DataFrame()
|
||||
countChanges = resampledData['different_activity'].resample('D').sum()
|
||||
|
||||
#Concatenating all the processed data only, no other sensor data is added here for simplicity
|
||||
finalDataset = pd.DataFrame()
|
||||
finalDataset = pd.concat([count, mostCommonActivity, uniqueActivities, countChanges],axis=1)
|
||||
finalDataset.rename(columns={0:"count",1:'most_common_activity','activity_type':'number_unique_activities','different_activity':'activity_change_count'},inplace = True)
|
||||
|
||||
#Export final dataframe with extracted features to respective PID
|
||||
finalDataset.index.names = ['local_date']
|
||||
finalDataset.columns=columns
|
||||
finalDataset.to_csv(snakemake.output[0])
|
||||
|
||||
|
|
Loading…
Reference in New Issue