Optimize Barnett's computation multi-day segments
parent
d0858f8833
commit
c48c1c8f24
|
@ -205,6 +205,9 @@ for provider in config["PHONE_LOCATIONS"]["PROVIDERS"].keys():
|
|||
else:
|
||||
raise ValueError("Error: Add PHONE_LOCATIONS (and as many PHONE_SENSORS as you have) to [PHONE_DATA_YIELD][SENSORS] in config.yaml. This is necessary to compute phone_yielded_timestamps (time when the smartphone was sensing data) which is used to resample fused location data (ALL_RESAMPLED and RESAMPLED_FUSED)")
|
||||
|
||||
if provider == "BARNETT":
|
||||
files_to_compute.extend(expand("data/interim/{pid}/phone_locations_barnett_daily.csv", pid=config["PIDS"]))
|
||||
|
||||
files_to_compute.extend(expand("data/raw/{pid}/phone_locations_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/phone_locations_processed.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/phone_locations_processed_with_datetime.csv", pid=config["PIDS"]))
|
||||
|
|
|
@ -33,7 +33,7 @@ These features are based on the original open-source implementation by [Barnett
|
|||
|
||||
|
||||
!!! info "Available time segments and platforms"
|
||||
- Available only for segments that start at 00:00:00 and end at 23:59:59 of the same day (daily segments)
|
||||
- Available only for segments that start at 00:00:00 and end at 23:59:59 of the same or a different day (daily, weekly, weekend, etc.)
|
||||
- Available for Android and iOS
|
||||
|
||||
!!! info "File Sequence"
|
||||
|
@ -78,7 +78,17 @@ Features description for `[PHONE_LOCATIONS][PROVIDERS][BARNETT]` adapted from [B
|
|||
|wkenddayrtn | - | Same as circdnrtn but computed separately for weekends and weekdays.
|
||||
|
||||
!!! note "Assumptions/Observations"
|
||||
**Barnett\'s et al features**
|
||||
**Multi day segment features**
|
||||
Barnett's features are only available on time segments that span entire days (00:00:00 to 23:59:59). Such segments can be one-day long (daily) or multi-day (weekly, for example). Multi-day segment features are computed based on daily features summarized the following way:
|
||||
|
||||
- sum for `hometime`, `disttravelled`, `siglocsvisited`, and `minutes_data_used`
|
||||
- max for `maxdiam`, and `maxhomedist`
|
||||
- mean for `rog`, `avgflightlen`, `stdflightlen`, `avgflightdur`, `stdflightdur`, `probpause`, `siglocentropy`, `circdnrtn`, `wkenddayrtn`, and `minsmissing`
|
||||
|
||||
**Computation speed**
|
||||
The process to extract these features can be slow compared to other sensors and providers due to the required simulation.
|
||||
|
||||
**How are these features computed?**
|
||||
These features are based on a Pause-Flight model. A pause is defined as a mobility trace (location pings) within a certain duration and distance (by default, 300 seconds and 60 meters). A flight is any mobility trace between two pauses. Data is resampled and imputed before the features are computed. See [Barnett et al](../../citation#barnett-locations) for more information. In RAPIDS, we only expose one parameter for these features (accuracy limit). You can change other parameters in `src/features/phone_locations/barnett/library/MobilityFeatures.R`.
|
||||
|
||||
**Significant Locations**
|
||||
|
|
|
@ -11,6 +11,11 @@ def get_script_language(script_path):
|
|||
|
||||
|
||||
# Features.smk #########################################################################################################
|
||||
def get_barnett_daily(wildcards):
|
||||
if wildcards.provider_key.upper() == "BARNETT":
|
||||
return "data/interim/{pid}/phone_locations_barnett_daily.csv"
|
||||
return []
|
||||
|
||||
def find_features_files(wildcards):
|
||||
feature_files = []
|
||||
for provider_key, provider in config[(wildcards.sensor_key).upper()]["PROVIDERS"].items():
|
||||
|
|
|
@ -379,10 +379,22 @@ rule phone_locations_python_features:
|
|||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule phone_locations_barnett_daily_features:
|
||||
input:
|
||||
sensor_data = "data/interim/{pid}/phone_locations_processed_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv",
|
||||
params:
|
||||
provider = lambda wildcards: config["PHONE_LOCATIONS"]["PROVIDERS"]["BARNETT"],
|
||||
output:
|
||||
"data/interim/{pid}/phone_locations_barnett_daily.csv"
|
||||
script:
|
||||
"../src/features/phone_locations/barnett/daily_features.R"
|
||||
|
||||
rule phone_locations_r_features:
|
||||
input:
|
||||
sensor_data = "data/interim/{pid}/phone_locations_processed_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv",
|
||||
barnett_daily = get_barnett_daily
|
||||
params:
|
||||
provider = lambda wildcards: config["PHONE_LOCATIONS"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
source("renv/activate.R")
|
||||
library("dplyr", warn.conflicts = F)
|
||||
library("stringr")
|
||||
library("lubridate")
|
||||
library("purrr")
|
||||
|
||||
# Load Ian Barnett's code. From https://scholar.harvard.edu/ibarnett/software/gpsmobility
|
||||
file.sources = list.files(c("src/features/phone_locations/barnett/library"), pattern="*.R$", full.names=TRUE, ignore.case=TRUE)
|
||||
output_apply <- sapply(file.sources,source,.GlobalEnv)
|
||||
|
||||
create_empty_file <- function(){
|
||||
return(data.frame(local_date= character(), hometime= numeric(), disttravelled= numeric(), rog= numeric(), maxdiam= numeric(),
|
||||
maxhomedist= numeric(), siglocsvisited= numeric(), avgflightlen= numeric(), stdflightlen= numeric(),
|
||||
avgflightdur= numeric(), stdflightdur= numeric(), probpause= numeric(), siglocentropy= numeric(), minsmissing= numeric(),
|
||||
circdnrtn= numeric(), wkenddayrtn= numeric(), minutes_data_used= numeric()
|
||||
))
|
||||
}
|
||||
|
||||
barnett_daily_features <- function(snakemake){
|
||||
location_features <- NULL
|
||||
location <- read.csv(snakemake@input[["sensor_data"]], stringsAsFactors = FALSE)
|
||||
segment_labels <- read.csv(snakemake@input[["time_segments_labels"]], stringsAsFactors = FALSE)
|
||||
accuracy_limit <- snakemake@params[["provider"]][["ACCURACY_LIMIT"]]
|
||||
datetime_start_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2} 00:00:00"
|
||||
datetime_end_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2} 23:59:59"
|
||||
location <- location %>%
|
||||
filter(accuracy < accuracy_limit) %>%
|
||||
mutate(is_daily = str_detect(assigned_segments, paste0(".*#", datetime_start_regex, ",", datetime_end_regex, ".*")))
|
||||
|
||||
|
||||
if(nrow(location) == 0 || all(location$is_daily == FALSE) || (max(location$timestamp) - min(location$timestamp) < 86400000)){
|
||||
warning("Barnett's location features cannot be computed for data or time segments that do not span one or more entire days (00:00:00 to 23:59:59). Values below point to the problem:",
|
||||
"\nLocation data rows within accuracy: ", nrow(location %>% filter(accuracy < accuracy_limit)),
|
||||
"\nLocation data rows within a daily time segment: ", nrow(filter(location, is_daily)),
|
||||
"\nLocation data time span in days: ", round((max(location$timestamp) - min(location$timestamp)) / 86400000, 2)
|
||||
)
|
||||
location_features <- create_empty_file()
|
||||
} else{
|
||||
# Count how many minutes of data we use to get location features. Some minutes have multiple fused rows
|
||||
location_minutes_used <- location %>%
|
||||
group_by(local_date, local_hour) %>%
|
||||
summarise(n_minutes = n_distinct(local_minute), .groups = 'drop_last') %>%
|
||||
group_by(local_date) %>%
|
||||
summarise(minutes_data_used = sum(n_minutes), .groups = 'drop_last') %>%
|
||||
select(local_date, minutes_data_used)
|
||||
|
||||
# Select only the columns that the algorithm needs
|
||||
all_timezones <- table(location %>% pull(local_timezone))
|
||||
location <- location %>% select(timestamp, latitude = double_latitude, longitude = double_longitude, altitude = double_altitude, accuracy)
|
||||
timezone <- names(all_timezones)[as.vector(all_timezones)==max(all_timezones)]
|
||||
outputMobility <- MobilityFeatures(location, ACCURACY_LIM = accuracy_limit, tz = timezone)
|
||||
|
||||
if(is.null(outputMobility)){
|
||||
location_features <- create_empty_file()
|
||||
} else {
|
||||
# Copy index (dates) as a column
|
||||
features <- cbind(rownames(outputMobility$featavg), outputMobility$featavg)
|
||||
features <- as.data.frame(features)
|
||||
features[-1] <- lapply(lapply(features[-1], as.character), as.numeric)
|
||||
colnames(features)=c("local_date",tolower(colnames(outputMobility$featavg)))
|
||||
location_features <- left_join(features, location_minutes_used, by = "local_date")
|
||||
}
|
||||
|
||||
}
|
||||
write.csv(location_features, snakemake@output[[1]], row.names =FALSE)
|
||||
}
|
||||
|
||||
barnett_daily_features(snakemake)
|
|
@ -1,108 +1,83 @@
|
|||
source("renv/activate.R")
|
||||
library("dplyr", warn.conflicts = F)
|
||||
library("stringr")
|
||||
|
||||
# Load Ian Barnett's code. Taken from https://scholar.harvard.edu/ibarnett/software/gpsmobility
|
||||
file.sources = list.files(c("src/features/phone_locations/barnett/library"), pattern="*.R$", full.names=TRUE, ignore.case=TRUE)
|
||||
sapply(file.sources,source,.GlobalEnv)
|
||||
library("lubridate")
|
||||
library("purrr")
|
||||
|
||||
create_empty_file <- function(requested_features){
|
||||
return(data.frame(local_segment= character(),
|
||||
hometime= numeric(),
|
||||
disttravelled= numeric(),
|
||||
rog= numeric(),
|
||||
maxdiam= numeric(),
|
||||
maxhomedist= numeric(),
|
||||
siglocsvisited= numeric(),
|
||||
avgflightlen= numeric(),
|
||||
stdflightlen= numeric(),
|
||||
avgflightdur= numeric(),
|
||||
stdflightdur= numeric(),
|
||||
probpause= numeric(),
|
||||
siglocentropy= numeric(),
|
||||
minsmissing= numeric(),
|
||||
circdnrtn= numeric(),
|
||||
wkenddayrtn= numeric(),
|
||||
minutes_data_used= numeric()
|
||||
) %>% select(all_of(requested_features)))
|
||||
hometime= numeric(),
|
||||
disttravelled= numeric(),
|
||||
rog= numeric(),
|
||||
maxdiam= numeric(),
|
||||
maxhomedist= numeric(),
|
||||
siglocsvisited= numeric(),
|
||||
avgflightlen= numeric(),
|
||||
stdflightlen= numeric(),
|
||||
avgflightdur= numeric(),
|
||||
stdflightdur= numeric(),
|
||||
probpause= numeric(),
|
||||
siglocentropy= numeric(),
|
||||
minsmissing= numeric(),
|
||||
circdnrtn= numeric(),
|
||||
wkenddayrtn= numeric(),
|
||||
minutes_data_used= numeric()
|
||||
) %>% select(all_of(requested_features)))
|
||||
}
|
||||
|
||||
summarise_multiday_segments <- function(segments, features){
|
||||
features <- features %>% mutate(local_date=ymd(local_date))
|
||||
segments <- segments %>% extract(col = local_segment,
|
||||
into = c ("local_segment_start_datetime", "local_segment_end_datetime"),
|
||||
".*#(.*) .*,(.*) .*",
|
||||
remove = FALSE) %>%
|
||||
mutate(local_segment_start_datetime = ymd(local_segment_start_datetime),
|
||||
local_segment_end_datetime = ymd(local_segment_end_datetime)) %>%
|
||||
group_by(local_segment) %>%
|
||||
nest() %>%
|
||||
mutate(data = map(data, function(nested_data, nested_features){
|
||||
|
||||
summary <- nested_features %>% filter(local_date >= nested_data$local_segment_start_datetime &
|
||||
local_date <= nested_data$local_segment_end_datetime)
|
||||
if(nrow(summary) > 0)
|
||||
summary <- summary %>%
|
||||
summarise(across(c(hometime, disttravelled, siglocsvisited, minutes_data_used), sum),
|
||||
across(c(maxdiam, maxhomedist), max),
|
||||
across(c(rog, avgflightlen, stdflightlen, avgflightdur, stdflightdur, probpause, siglocentropy, circdnrtn, wkenddayrtn, minsmissing), mean))
|
||||
return(summary)
|
||||
|
||||
}, features)) %>%
|
||||
unnest(cols = everything()) %>%
|
||||
ungroup()
|
||||
return(segments)
|
||||
}
|
||||
|
||||
barnett_features <- function(sensor_data_files, time_segment, params){
|
||||
|
||||
location_data <- read.csv(sensor_data_files[["sensor_data"]], stringsAsFactors = FALSE)
|
||||
location_features <- NULL
|
||||
|
||||
location <- location_data
|
||||
accuracy_limit <- params[["ACCURACY_LIMIT"]]
|
||||
daily_features <- read.csv(sensor_data_files[["barnett_daily"]], stringsAsFactors = FALSE)
|
||||
location <- read.csv(sensor_data_files[["sensor_data"]], stringsAsFactors = FALSE)
|
||||
minutes_data_used <- params[["MINUTES_DATA_USED"]]
|
||||
|
||||
# Compute what features were requested
|
||||
available_features <- c("hometime","disttravelled","rog","maxdiam", "maxhomedist","siglocsvisited","avgflightlen", "stdflightlen",
|
||||
"avgflightdur","stdflightdur", "probpause","siglocentropy","minsmissing", "circdnrtn","wkenddayrtn")
|
||||
"avgflightdur","stdflightdur", "probpause","siglocentropy", "circdnrtn","wkenddayrtn")
|
||||
requested_features <- intersect(unlist(params["FEATURES"], use.names = F), available_features)
|
||||
requested_features <- c("local_segment", requested_features)
|
||||
if(minutes_data_used)
|
||||
requested_features <- c(requested_features, "minutes_data_used")
|
||||
|
||||
# Excludes datasets with less than 24 hours of data
|
||||
if(max(location$timestamp) - min(location$timestamp) < 86400000)
|
||||
location <- head(location, 0)
|
||||
|
||||
if (nrow(location) > 1){
|
||||
# Filter by segment and skipping any non-daily segment
|
||||
if (nrow(location) > 0 & nrow(daily_features) > 0){
|
||||
location <- location %>% filter_data_by_segment(time_segment)
|
||||
|
||||
datetime_start_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2} 00:00:00"
|
||||
datetime_end_regex = "[0-9]{4}[\\-|\\/][0-9]{2}[\\-|\\/][0-9]{2} 23:59:59"
|
||||
location <- location %>% mutate(is_daily = str_detect(local_segment, paste0(time_segment, "#", datetime_start_regex, ",", datetime_end_regex)))
|
||||
|
||||
if(!all(location$is_daily)){
|
||||
message(paste("Barnett's location features cannot be computed for time segmentes that are not daily (cover 00:00:00 to 23:59:59 of every day). Skipping ", time_segment))
|
||||
if(nrow(location) == 0 || !all(location$is_daily)){
|
||||
message(paste("Barnett's location features cannot be computed for data or time segmentes that do not span entire days (00:00:00 to 23:59:59). Skipping ", time_segment))
|
||||
location_features <- create_empty_file(requested_features)
|
||||
} else {
|
||||
# Count how many minutes of data we use to get location features
|
||||
# Some minutes have multiple fused rows
|
||||
location_minutes_used <- location %>%
|
||||
group_by(local_date, local_hour) %>%
|
||||
summarise(n_minutes = n_distinct(local_minute), .groups = 'drop_last') %>%
|
||||
group_by(local_date) %>%
|
||||
summarise(minutes_data_used = sum(n_minutes), .groups = 'drop_last') %>%
|
||||
select(local_date, minutes_data_used)
|
||||
|
||||
# Save time segment to attach it later
|
||||
location_dates_segments <- location %>% select(local_date, local_segment) %>% distinct(local_date, .keep_all = TRUE)
|
||||
|
||||
# Select only the columns that the algorithm needs
|
||||
all_timezones <- table(location %>% pull(local_timezone))
|
||||
location <- location %>% select(timestamp, latitude = double_latitude, longitude = double_longitude, altitude = double_altitude, accuracy)
|
||||
if(nrow(location %>% filter(accuracy < accuracy_limit)) > 1){
|
||||
timezone <- names(all_timezones)[as.vector(all_timezones)==max(all_timezones)]
|
||||
outputMobility <- MobilityFeatures(location, ACCURACY_LIM = accuracy_limit, tz = timezone)
|
||||
} else {
|
||||
print(paste("Cannot compute Barnett location features because there are no rows with an accuracy value lower than ACCURACY_LIMIT", accuracy_limit))
|
||||
outputMobility <- NULL
|
||||
}
|
||||
|
||||
if(is.null(outputMobility)){
|
||||
location_features <- create_empty_file(requested_features)
|
||||
} else{
|
||||
# Copy index (dates) as a column
|
||||
features <- cbind(rownames(outputMobility$featavg), outputMobility$featavg)
|
||||
features <- as.data.frame(features)
|
||||
features[-1] <- lapply(lapply(features[-1], as.character), as.numeric)
|
||||
colnames(features)=c("local_date",tolower(colnames(outputMobility$featavg)))
|
||||
# Add the minute count column
|
||||
features <- left_join(features, location_minutes_used, by = "local_date")
|
||||
# Add the time segment column for consistency
|
||||
features <- left_join(features, location_dates_segments, by = "local_date")
|
||||
location_features <- features %>% select(all_of(requested_features))
|
||||
}
|
||||
location_dates_segments <- location %>% select(local_segment) %>% distinct(local_segment, .keep_all = TRUE)
|
||||
features <- summarise_multiday_segments(location_dates_segments, daily_features)
|
||||
location_features <- features %>% select(all_of(requested_features))
|
||||
}
|
||||
} else {
|
||||
location_features <- create_empty_file(requested_features)
|
||||
}
|
||||
|
||||
if(ncol(location_features) != length(requested_features))
|
||||
stop(paste0("The number of features in the output dataframe (=", ncol(location_features),") does not match the expected value (=", length(requested_features),"). Verify your barnett location features"))
|
||||
} else
|
||||
location_features <- create_empty_file(requested_features)
|
||||
return(location_features)
|
||||
}
|
Loading…
Reference in New Issue