Empatica data yield usage in the cleaning script.

notes
Primoz 2022-09-26 15:54:00 +00:00
parent d9a574c550
commit bd53dc1684
3 changed files with 36 additions and 48 deletions

View File

@ -671,8 +671,9 @@ ALL_CLEANING_INDIVIDUAL:
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
COLS_VAR_THRESHOLD: True COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.4 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.25 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES: DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5 MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
@ -706,8 +707,9 @@ ALL_CLEANING_OVERALL:
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
COLS_VAR_THRESHOLD: True COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable PHONE_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES: DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5 MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5

View File

@ -8,6 +8,8 @@ from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import seaborn as sns import seaborn as sns
from src.features import empatica_data_yield as edy
def straw_cleaning(sensor_data_files, provider): def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0]) features = pd.read_csv(sensor_data_files["sensor_data"][0])
@ -19,68 +21,52 @@ def straw_cleaning(sensor_data_files, provider):
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime'] excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE # (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']: if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True) features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
# TODO: imputate the rows where the participants have at least 2 rows (2 time segments) - error prevention (has to be tested)
# TODO: because of different imputation logic (e.g., the phone_data_yield parameter for phone features) the imputation has to
# be planned accordingly. Should the phone features first be imputated with 0 and only then general kNN imputation is executed
# i.e., on the rows that are missing when E4 and phone features availability is not synchronized. CHECK phone_data_yield feat.
# A lot of imputation types/levels (1) imputation related to feature's content (2) imputation related to phone / empatica
# structual specifics (3) general imputation which is needed when types of features desynchronization is present (row is not full)
# because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN
# values still exist.
# (2) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows) # (2) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]] features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# (3.1) QUALITY CHECK (DATA YIELD COLUMN) which determines if the row stays or not (if either E4 or phone is low quality the row is useless - TODO: determine threshold) # (3.1) QUALITY CHECK (DATA YIELD COLUMN) which determines if the row stays or not (if either E4 or phone is low quality the row is useless - TODO: determine threshold)
# Here, the imputation is still not executed - only quality check
# ??? Drop rows with the value of phone_data_yield_column less than data_yield_ratio_threshold ???
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower() phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
empatica_data_yield_column = "????????????" features = edy.calculate_empatica_data_yield(features)
if not phone_data_yield_column in features.columns and not empatica_data_yield_column in features.columns: if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].") raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]: if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]] features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]]
# Potrebno premisliti točno kako bi izgledal data_yield za E4: bo se ustvaril dodaten stolpec; bodo različne spremenljivke, podobno kot hour in minute pri phone?
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]: if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features['???????????????'] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]] features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]]
# ---> imputation ?? # ---> imputation ??
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"] # impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
if True: #impute_phone_features["COMPUTE"]: # if True: #impute_phone_features["COMPUTE"]:
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns: # if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].") # raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here # phone_cols = [col for col in features if \
phone_cols = [col for col in features if \ # col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_applications_foreground_rapids_') or # col.startswith('phone_battery_rapids_') or
col.startswith('phone_battery_rapids_') or # col.startswith('phone_calls_rapids_') or
col.startswith('phone_calls_rapids_') or # col.startswith('phone_keyboard_rapids_') or
col.startswith('phone_keyboard_rapids_') or # col.startswith('phone_messages_rapids_') or
col.startswith('phone_messages_rapids_') or # col.startswith('phone_screen_rapids_') or
col.startswith('phone_screen_rapids_') or # col.startswith('phone_wifi_')]
col.startswith('phone_wifi_')]
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE'] # mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower()) # features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
print(features[features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']][phone_cols]) # print(features[features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']][phone_cols])
# (3.2) (optional) DOES ROW CONSIST OF ENOUGH NON-NAN VALUES? Possible some of these examples could still pass previous condition but not this one? # (3.2) (optional) DOES ROW CONSIST OF ENOUGH NON-NAN VALUES? Possible some of these examples could still pass previous condition but not this one?
# () Remove rows if threshold of NaN values is passed
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True) features.dropna(axis=0, thresh=min_count, inplace=True)
@ -118,11 +104,9 @@ def straw_cleaning(sensor_data_files, provider):
features.drop(to_drop, axis=1, inplace=True) features.drop(to_drop, axis=1, inplace=True)
## (8) STANDARDIZATION ## (8) STANDARDIZATION
if provider["STANDARDIZATION"]: if provider["STANDARDIZATION"]:
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)]) features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME # (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
if features.isna().any().any(): if features.isna().any().any():
raise ValueError raise ValueError

View File

@ -10,17 +10,19 @@ def calculate_empatica_data_yield(features):
datetime_end = datetime.strptime(df.loc[0, 'local_segment_end_datetime'], '%y-%m-%d %H:%M:%S') datetime_end = datetime.strptime(df.loc[0, 'local_segment_end_datetime'], '%y-%m-%d %H:%M:%S')
tseg_duration = (datetime_end - datetime_start).total_seconds() tseg_duration = (datetime_end - datetime_start).total_seconds()
acc_data_yield = (features['empatica_accelerometer_cr_SO_windowsCount'] * 15) / tseg_duration features["acc_data_yield"] = (features['empatica_accelerometer_cr_SO_windowsCount'] * 15) / tseg_duration
temp_data_yield = (features['empatica_temperature_cr_SO_windowsCount'] * 300) / tseg_duration features["temp_data_yield"] = (features['empatica_temperature_cr_SO_windowsCount'] * 300) / tseg_duration
acc_data_yield = (features['empatica_electrodermal_activity_cr_SO_windowsCount'] * 60) / tseg_duration features["eda_data_yield"] = (features['empatica_electrodermal_activity_cr_SO_windowsCount'] * 60) / tseg_duration
ibi_data_yield = (features['empatica_inter_beat_interval_cr_SO_windowsCount'] * 300) / tseg_duration features["ibi_data_yield"] = (features['empatica_inter_beat_interval_cr_SO_windowsCount'] * 300) / tseg_duration
features["empatica_data_yield"] = features[['acc_data_yield', 'temp_data_yield', 'eda_data_yield', 'ibi_data_yield']].mean(axis=1)
# TODO: morda smisleno obdelovati različne senzorje ločeno -> lahko da ibi ne bo dobre kvalitete, ostali pa bodo okej. Zakaj bi samo zaradi IBI zavrgli celotno vrstico ... # TODO: morda smisleno obdelovati različne senzorje ločeno -> lahko da ibi ne bo dobre kvalitete, ostali pa bodo okej. Zakaj bi samo zaradi IBI zavrgli celotno vrstico ...
# lahko se tudi naredi overall kvaliteta empatice npr. povprečje vseh data_yield rezultatov? Oz. povprečje z utežmi glede na število stolpcev, ki jih senzor vsebuje # lahko se tudi naredi overall kvaliteta empatice npr. povprečje vseh data_yield rezultatov? Oz. povprečje z utežmi glede na število stolpcev, ki jih senzor vsebuje
# ... čeprav št. stolpcev ni najboljše, saj je pomembnost nekaterih (npr. EDA) značilk zelo vprašljiva. # ... čeprav št. stolpcev ni najboljše, saj je pomembnost nekaterih (npr. EDA) značilk zelo vprašljiva.
# TODO: bolja nastavitev delovnih ur sedaj je od 4 do 4... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ... # TODO: boljša nastavitev delovnih ur sedaj je od 4 do 4... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ...
data_yield_features = [col for col in features.columns if "SO_windowsCount" in col and "a"] return features