Empatica data yield usage in the cleaning script.
parent
d9a574c550
commit
bd53dc1684
10
config.yaml
10
config.yaml
|
@ -671,8 +671,9 @@ ALL_CLEANING_INDIVIDUAL:
|
||||||
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.4 # set to 0 to disable
|
||||||
|
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.25 # set to 0 to disable
|
||||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||||
|
@ -706,8 +707,9 @@ ALL_CLEANING_OVERALL:
|
||||||
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
COLS_NAN_THRESHOLD: 1 # set to 1 remove only columns that contains all NaN
|
||||||
COLS_VAR_THRESHOLD: True
|
COLS_VAR_THRESHOLD: True
|
||||||
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
|
||||||
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
||||||
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||||
|
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
|
||||||
DROP_HIGHLY_CORRELATED_FEATURES:
|
DROP_HIGHLY_CORRELATED_FEATURES:
|
||||||
COMPUTE: True
|
COMPUTE: True
|
||||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||||
|
|
|
@ -8,6 +8,8 @@ from sklearn.preprocessing import StandardScaler
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
|
|
||||||
|
from src.features import empatica_data_yield as edy
|
||||||
|
|
||||||
def straw_cleaning(sensor_data_files, provider):
|
def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
||||||
|
@ -19,68 +21,52 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||||
|
|
||||||
|
|
||||||
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||||
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
||||||
|
|
||||||
# TODO: imputate the rows where the participants have at least 2 rows (2 time segments) - error prevention (has to be tested)
|
|
||||||
# TODO: because of different imputation logic (e.g., the phone_data_yield parameter for phone features) the imputation has to
|
|
||||||
# be planned accordingly. Should the phone features first be imputated with 0 and only then general kNN imputation is executed
|
|
||||||
# i.e., on the rows that are missing when E4 and phone features availability is not synchronized. CHECK phone_data_yield feat.
|
|
||||||
# A lot of imputation types/levels (1) imputation related to feature's content (2) imputation related to phone / empatica
|
|
||||||
# structual specifics (3) general imputation which is needed when types of features desynchronization is present (row is not full)
|
|
||||||
# because of the lack of the availability. Secondly, there's a high importance that features data frame is checked if and NaN
|
|
||||||
# values still exist.
|
|
||||||
|
|
||||||
# (2) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
# (2) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||||
|
|
||||||
# (3.1) QUALITY CHECK (DATA YIELD COLUMN) which determines if the row stays or not (if either E4 or phone is low quality the row is useless - TODO: determine threshold)
|
# (3.1) QUALITY CHECK (DATA YIELD COLUMN) which determines if the row stays or not (if either E4 or phone is low quality the row is useless - TODO: determine threshold)
|
||||||
# Here, the imputation is still not executed - only quality check
|
|
||||||
|
|
||||||
# ??? Drop rows with the value of phone_data_yield_column less than data_yield_ratio_threshold ???
|
|
||||||
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||||
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
|
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
|
||||||
|
|
||||||
empatica_data_yield_column = "????????????"
|
features = edy.calculate_empatica_data_yield(features)
|
||||||
|
|
||||||
if not phone_data_yield_column in features.columns and not empatica_data_yield_column in features.columns:
|
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
||||||
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]]
|
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]]
|
||||||
|
|
||||||
# Potrebno premisliti točno kako bi izgledal data_yield za E4: bo se ustvaril dodaten stolpec; bodo različne spremenljivke, podobno kot hour in minute pri phone?
|
|
||||||
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
features = features[features['???????????????'] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]]
|
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]]
|
||||||
|
|
||||||
# ---> imputation ??
|
# ---> imputation ??
|
||||||
|
|
||||||
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
# impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
|
||||||
|
|
||||||
if True: #impute_phone_features["COMPUTE"]:
|
# if True: #impute_phone_features["COMPUTE"]:
|
||||||
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
# if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
|
||||||
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
|
# raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
|
||||||
|
|
||||||
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
|
# phone_cols = [col for col in features if \
|
||||||
phone_cols = [col for col in features if \
|
# col.startswith('phone_applications_foreground_rapids_') or
|
||||||
col.startswith('phone_applications_foreground_rapids_') or
|
# col.startswith('phone_battery_rapids_') or
|
||||||
col.startswith('phone_battery_rapids_') or
|
# col.startswith('phone_calls_rapids_') or
|
||||||
col.startswith('phone_calls_rapids_') or
|
# col.startswith('phone_keyboard_rapids_') or
|
||||||
col.startswith('phone_keyboard_rapids_') or
|
# col.startswith('phone_messages_rapids_') or
|
||||||
col.startswith('phone_messages_rapids_') or
|
# col.startswith('phone_screen_rapids_') or
|
||||||
col.startswith('phone_screen_rapids_') or
|
# col.startswith('phone_wifi_')]
|
||||||
col.startswith('phone_wifi_')]
|
|
||||||
|
|
||||||
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
# mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
|
||||||
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
# features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
|
||||||
|
|
||||||
print(features[features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']][phone_cols])
|
# print(features[features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']][phone_cols])
|
||||||
|
|
||||||
# (3.2) (optional) DOES ROW CONSIST OF ENOUGH NON-NAN VALUES? Possible some of these examples could still pass previous condition but not this one?
|
# (3.2) (optional) DOES ROW CONSIST OF ENOUGH NON-NAN VALUES? Possible some of these examples could still pass previous condition but not this one?
|
||||||
# () Remove rows if threshold of NaN values is passed
|
|
||||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||||
features.dropna(axis=0, thresh=min_count, inplace=True)
|
features.dropna(axis=0, thresh=min_count, inplace=True)
|
||||||
|
|
||||||
|
@ -118,11 +104,9 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
features.drop(to_drop, axis=1, inplace=True)
|
features.drop(to_drop, axis=1, inplace=True)
|
||||||
|
|
||||||
## (8) STANDARDIZATION
|
## (8) STANDARDIZATION
|
||||||
|
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||||
|
|
||||||
|
|
||||||
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||||
if features.isna().any().any():
|
if features.isna().any().any():
|
||||||
raise ValueError
|
raise ValueError
|
||||||
|
|
|
@ -10,17 +10,19 @@ def calculate_empatica_data_yield(features):
|
||||||
datetime_end = datetime.strptime(df.loc[0, 'local_segment_end_datetime'], '%y-%m-%d %H:%M:%S')
|
datetime_end = datetime.strptime(df.loc[0, 'local_segment_end_datetime'], '%y-%m-%d %H:%M:%S')
|
||||||
tseg_duration = (datetime_end - datetime_start).total_seconds()
|
tseg_duration = (datetime_end - datetime_start).total_seconds()
|
||||||
|
|
||||||
acc_data_yield = (features['empatica_accelerometer_cr_SO_windowsCount'] * 15) / tseg_duration
|
features["acc_data_yield"] = (features['empatica_accelerometer_cr_SO_windowsCount'] * 15) / tseg_duration
|
||||||
temp_data_yield = (features['empatica_temperature_cr_SO_windowsCount'] * 300) / tseg_duration
|
features["temp_data_yield"] = (features['empatica_temperature_cr_SO_windowsCount'] * 300) / tseg_duration
|
||||||
acc_data_yield = (features['empatica_electrodermal_activity_cr_SO_windowsCount'] * 60) / tseg_duration
|
features["eda_data_yield"] = (features['empatica_electrodermal_activity_cr_SO_windowsCount'] * 60) / tseg_duration
|
||||||
ibi_data_yield = (features['empatica_inter_beat_interval_cr_SO_windowsCount'] * 300) / tseg_duration
|
features["ibi_data_yield"] = (features['empatica_inter_beat_interval_cr_SO_windowsCount'] * 300) / tseg_duration
|
||||||
|
|
||||||
|
features["empatica_data_yield"] = features[['acc_data_yield', 'temp_data_yield', 'eda_data_yield', 'ibi_data_yield']].mean(axis=1)
|
||||||
|
|
||||||
# TODO: morda smisleno obdelovati različne senzorje ločeno -> lahko da ibi ne bo dobre kvalitete, ostali pa bodo okej. Zakaj bi samo zaradi IBI zavrgli celotno vrstico ...
|
# TODO: morda smisleno obdelovati različne senzorje ločeno -> lahko da ibi ne bo dobre kvalitete, ostali pa bodo okej. Zakaj bi samo zaradi IBI zavrgli celotno vrstico ...
|
||||||
# lahko se tudi naredi overall kvaliteta empatice npr. povprečje vseh data_yield rezultatov? Oz. povprečje z utežmi glede na število stolpcev, ki jih senzor vsebuje
|
# lahko se tudi naredi overall kvaliteta empatice npr. povprečje vseh data_yield rezultatov? Oz. povprečje z utežmi glede na število stolpcev, ki jih senzor vsebuje
|
||||||
# ... čeprav št. stolpcev ni najboljše, saj je pomembnost nekaterih (npr. EDA) značilk zelo vprašljiva.
|
# ... čeprav št. stolpcev ni najboljše, saj je pomembnost nekaterih (npr. EDA) značilk zelo vprašljiva.
|
||||||
# TODO: bolja nastavitev delovnih ur sedaj je od 4 do 4... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ...
|
# TODO: boljša nastavitev delovnih ur sedaj je od 4 do 4... to povzroči veliko manjkajočih podatkov in posledično nizek (telefonski in E4) data_yield ...
|
||||||
|
|
||||||
data_yield_features = [col for col in features.columns if "SO_windowsCount" in col and "a"]
|
return features
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue