Last changes before processing on the server.
parent
44531c6d94
commit
bbeabeee6f
|
@ -73,9 +73,12 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
"timelastmessages" in col]
|
"timelastmessages" in col]
|
||||||
features[impute_w_hn] = impute(features[impute_w_hn], method="high_number")
|
features[impute_w_hn] = impute(features[impute_w_hn], method="high_number")
|
||||||
|
|
||||||
# Impute special case (mostcommonactivity)
|
# Impute special case (mostcommonactivity) and (homelabel)
|
||||||
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
|
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
|
||||||
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation
|
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
|
||||||
|
|
||||||
|
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
|
||||||
|
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
|
||||||
|
|
||||||
# Impute selected phone features with 0
|
# Impute selected phone features with 0
|
||||||
impute_zero = [col for col in features if \
|
impute_zero = [col for col in features if \
|
||||||
|
@ -87,20 +90,16 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
col.startswith('phone_messages_rapids_') or
|
col.startswith('phone_messages_rapids_') or
|
||||||
col.startswith('phone_screen_rapids_') or
|
col.startswith('phone_screen_rapids_') or
|
||||||
col.startswith('phone_wifi_visible')]
|
col.startswith('phone_wifi_visible')]
|
||||||
features[impute_locations] = impute(features[impute_locations], method="zero")
|
features[impute_zero] = impute(features[impute_zero], method="zero")
|
||||||
|
|
||||||
## (5) STANDARDIZATION
|
## (5) STANDARDIZATION
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||||
|
|
||||||
graph_bf_af(features[impute_locations], "knn_before")
|
|
||||||
|
|
||||||
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
||||||
impute_cols = [col for col in features.columns if col not in excluded_columns]
|
impute_cols = [col for col in features.columns if col not in excluded_columns]
|
||||||
features[impute_cols] = impute(features[impute_cols], method="knn")
|
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||||
|
|
||||||
graph_bf_af(features[impute_locations], "knn_after")
|
|
||||||
|
|
||||||
# (7) REMOVE COLS WHERE VARIANCE IS 0
|
# (7) REMOVE COLS WHERE VARIANCE IS 0
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
|
||||||
|
|
||||||
|
@ -131,8 +130,6 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if features.isna().any().any():
|
if features.isna().any().any():
|
||||||
raise ValueError
|
raise ValueError
|
||||||
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def impute(df, method='zero'):
|
def impute(df, method='zero'):
|
||||||
|
@ -149,9 +146,13 @@ def impute(df, method='zero'):
|
||||||
'knn': k_nearest(df)
|
'knn': k_nearest(df)
|
||||||
}[method]
|
}[method]
|
||||||
|
|
||||||
def graph_bf_af(features, phase_name):
|
def graph_bf_af(features, phase_name, plt_flag=False):
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
if plt_flag:
|
||||||
print(features)
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
||||||
plt.savefig(f'features_individual_nans_{phase_name}.png', bbox_inches='tight')
|
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
print(f"\n-------------{phase_name}-------------")
|
||||||
|
print("Rows number:", features.shape[0])
|
||||||
|
print("Columns number:", len(features.columns))
|
||||||
|
print("---------------------------------------------\n")
|
||||||
|
|
|
@ -11,8 +11,6 @@ import seaborn as sns
|
||||||
sys.path.append('/rapids/')
|
sys.path.append('/rapids/')
|
||||||
from src.features import empatica_data_yield as edy
|
from src.features import empatica_data_yield as edy
|
||||||
|
|
||||||
pd.set_option('display.max_columns', 20)
|
|
||||||
|
|
||||||
def straw_cleaning(sensor_data_files, provider):
|
def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
||||||
|
@ -24,11 +22,15 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||||
|
|
||||||
|
graph_bf_af(features, "1target_rows_before")
|
||||||
|
|
||||||
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
|
||||||
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
|
||||||
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
|
||||||
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
|
||||||
|
|
||||||
|
graph_bf_af(features, "2target_rows_after")
|
||||||
|
|
||||||
# (2.1) QUALITY CHECK (DATA YIELD COLUMN) deletes the rows where E4 or phone data is low quality
|
# (2.1) QUALITY CHECK (DATA YIELD COLUMN) deletes the rows where E4 or phone data is low quality
|
||||||
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
|
||||||
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
|
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
|
||||||
|
@ -38,23 +40,41 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
|
||||||
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
|
||||||
|
|
||||||
|
|
||||||
|
hist = features[["empatica_data_yield", phone_data_yield_column]].hist()
|
||||||
|
plt.legend()
|
||||||
|
plt.savefig(f'phone_E4_histogram.png', bbox_inches='tight')
|
||||||
# Drop rows where phone data yield is less then given threshold
|
# Drop rows where phone data yield is less then given threshold
|
||||||
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
|
print("\nThreshold:", provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"])
|
||||||
|
print("Phone features data yield stats:", features[phone_data_yield_column].describe(), "\n")
|
||||||
|
print(features[phone_data_yield_column].sort_values())
|
||||||
|
hist = features[phone_data_yield_column].hist(bins=5)
|
||||||
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
||||||
|
|
||||||
# Drop rows where empatica data yield is less then given threshold
|
# Drop rows where empatica data yield is less then given threshold
|
||||||
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
|
||||||
|
print("\nThreshold:", provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"])
|
||||||
|
print("E4 features data yield stats:", features["empatica_data_yield"].describe(), "\n")
|
||||||
|
print(features["empatica_data_yield"].sort_values())
|
||||||
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
|
||||||
|
|
||||||
|
sys.exit()
|
||||||
|
graph_bf_af(features, "3data_yield_drop_rows")
|
||||||
|
|
||||||
# (2.2) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
|
# (2.2) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
|
||||||
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
|
||||||
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
|
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
|
||||||
|
|
||||||
|
graph_bf_af(features, "4too_much_nans_rows")
|
||||||
|
|
||||||
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
|
||||||
|
|
||||||
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
|
||||||
|
|
||||||
|
graph_bf_af(features, "5too_much_nans_cols")
|
||||||
|
|
||||||
# Preserve esm cols if deleted (has to come after drop cols operations)
|
# Preserve esm cols if deleted (has to come after drop cols operations)
|
||||||
for esm in esm_cols:
|
for esm in esm_cols:
|
||||||
if esm not in features:
|
if esm not in features:
|
||||||
|
@ -73,9 +93,14 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
"timelastmessages" in col]
|
"timelastmessages" in col]
|
||||||
features[impute_w_hn] = impute(features[impute_w_hn], method="high_number")
|
features[impute_w_hn] = impute(features[impute_w_hn], method="high_number")
|
||||||
|
|
||||||
# Impute special case (mostcommonactivity)
|
graph_bf_af(features, "6high_number_imp")
|
||||||
|
|
||||||
|
# Impute special case (mostcommonactivity) and (homelabel)
|
||||||
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
|
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
|
||||||
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation
|
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
|
||||||
|
|
||||||
|
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
|
||||||
|
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
|
||||||
|
|
||||||
# Impute selected phone features with 0
|
# Impute selected phone features with 0
|
||||||
impute_zero = [col for col in features if \
|
impute_zero = [col for col in features if \
|
||||||
|
@ -87,7 +112,9 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
col.startswith('phone_messages_rapids_') or
|
col.startswith('phone_messages_rapids_') or
|
||||||
col.startswith('phone_screen_rapids_') or
|
col.startswith('phone_screen_rapids_') or
|
||||||
col.startswith('phone_wifi_visible')]
|
col.startswith('phone_wifi_visible')]
|
||||||
features[impute_locations] = impute(features[impute_locations], method="zero")
|
features[impute_zero] = impute(features[impute_zero], method="zero")
|
||||||
|
|
||||||
|
graph_bf_af(features, "7zero_imp")
|
||||||
|
|
||||||
# Impute phone locations with median - should this rather be imputed at kNN step??
|
# Impute phone locations with median - should this rather be imputed at kNN step??
|
||||||
# impute_locations = [col for col in features.columns if "phone_locations_" in col]
|
# impute_locations = [col for col in features.columns if "phone_locations_" in col]
|
||||||
|
@ -103,18 +130,19 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
|
|
||||||
# features[impute_locations] = features[impute_locations + ["pid"]].groupby("pid").transform(lambda x: x.fillna(x.median()))[impute_locations]
|
# features[impute_locations] = features[impute_locations + ["pid"]].groupby("pid").transform(lambda x: x.fillna(x.median()))[impute_locations]
|
||||||
|
|
||||||
|
|
||||||
# (5) STANDARDIZATION
|
# (5) STANDARDIZATION
|
||||||
if provider["STANDARDIZATION"]:
|
if provider["STANDARDIZATION"]:
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"])] = \
|
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"])] = \
|
||||||
features.loc[:, ~features.columns.isin(excluded_columns)].groupby('pid').transform(lambda x: 0 if (x.std() == 0) else (x - x.mean()) / x.std())
|
features.loc[:, ~features.columns.isin(excluded_columns)].groupby('pid').transform(lambda x: 0 if (x.std() == 0) else (x - x.mean()) / x.std())
|
||||||
|
|
||||||
graph_bf_af(features[impute_locations], "knn_before")
|
graph_bf_af(features, "8standardization")
|
||||||
|
|
||||||
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
|
||||||
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
|
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
|
||||||
features[impute_cols] = impute(features[impute_cols], method="knn")
|
features[impute_cols] = impute(features[impute_cols], method="knn")
|
||||||
|
|
||||||
graph_bf_af(features[impute_locations], "knn_after")
|
graph_bf_af(features, "9knn_after")
|
||||||
|
|
||||||
# (7) REMOVE COLS WHERE VARIANCE IS 0
|
# (7) REMOVE COLS WHERE VARIANCE IS 0
|
||||||
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
|
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
|
||||||
|
@ -122,6 +150,8 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if provider["COLS_VAR_THRESHOLD"]:
|
if provider["COLS_VAR_THRESHOLD"]:
|
||||||
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
|
||||||
|
|
||||||
|
graph_bf_af(features, "10variance_drop")
|
||||||
|
|
||||||
# (8) DROP HIGHLY CORRELATED FEATURES
|
# (8) DROP HIGHLY CORRELATED FEATURES
|
||||||
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
|
||||||
if drop_corr_features["COMPUTE"] and features.shape[0] > 5: # If small amount of segments (rows) is present, do not execute correlation check
|
if drop_corr_features["COMPUTE"] and features.shape[0] > 5: # If small amount of segments (rows) is present, do not execute correlation check
|
||||||
|
@ -142,12 +172,12 @@ def straw_cleaning(sensor_data_files, provider):
|
||||||
if esm not in features:
|
if esm not in features:
|
||||||
features[esm] = esm_cols[esm]
|
features[esm] = esm_cols[esm]
|
||||||
|
|
||||||
|
graph_bf_af(features, "11correlation_drop")
|
||||||
|
|
||||||
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||||
if features.isna().any().any():
|
if features.isna().any().any():
|
||||||
raise ValueError
|
raise ValueError
|
||||||
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def impute(df, method='zero'):
|
def impute(df, method='zero'):
|
||||||
|
@ -164,9 +194,14 @@ def impute(df, method='zero'):
|
||||||
'knn': k_nearest(df)
|
'knn': k_nearest(df)
|
||||||
}[method]
|
}[method]
|
||||||
|
|
||||||
def graph_bf_af(features, phase_name):
|
def graph_bf_af(features, phase_name, plt_flag=False):
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
if plt_flag:
|
||||||
print(features)
|
sns.set(rc={"figure.figsize":(16, 8)})
|
||||||
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
|
||||||
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
|
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
|
||||||
|
|
||||||
|
print(f"\n-------------{phase_name}-------------")
|
||||||
|
print("Rows number:", features.shape[0])
|
||||||
|
print("Columns number:", len(features.columns))
|
||||||
|
print("---------------------------------------------\n")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue