Calculate JCQ control and demand control ratio.
Include norms and corresponding quartile.labels
parent
2fed962644
commit
b5a6317f4b
|
@ -1,3 +1,4 @@
|
||||||
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
pid = snakemake.params["pid"]
|
pid = snakemake.params["pid"]
|
||||||
|
@ -23,6 +24,26 @@ dict_JCQ_demand_control_reverse = {
|
||||||
LIMESURVEY_JCQ_MIN = 1
|
LIMESURVEY_JCQ_MIN = 1
|
||||||
LIMESURVEY_JCQ_MAX = 4
|
LIMESURVEY_JCQ_MAX = 4
|
||||||
|
|
||||||
|
DEMAND_CONTROL_RATIO_MIN = 5 / (9 * 4)
|
||||||
|
DEMAND_CONTROL_RATIO_MAX = (4 * 5) / 9
|
||||||
|
|
||||||
|
JCQ_NORMS = {
|
||||||
|
"F": {
|
||||||
|
0: DEMAND_CONTROL_RATIO_MIN,
|
||||||
|
1: 0.45,
|
||||||
|
2: 0.52,
|
||||||
|
3: 0.62,
|
||||||
|
4: DEMAND_CONTROL_RATIO_MAX,
|
||||||
|
},
|
||||||
|
"M": {
|
||||||
|
0: DEMAND_CONTROL_RATIO_MIN,
|
||||||
|
1: 0.41,
|
||||||
|
2: 0.48,
|
||||||
|
3: 0.56,
|
||||||
|
4: DEMAND_CONTROL_RATIO_MAX,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
participant_info = pd.read_csv(snakemake.input[0], parse_dates=["date_of_birth"])
|
participant_info = pd.read_csv(snakemake.input[0], parse_dates=["date_of_birth"])
|
||||||
|
|
||||||
if not participant_info.empty:
|
if not participant_info.empty:
|
||||||
|
@ -37,38 +58,117 @@ if not participant_info.empty:
|
||||||
baseline_features.loc[0, "startlanguage"] = participant_info.loc[
|
baseline_features.loc[0, "startlanguage"] = participant_info.loc[
|
||||||
0, "startlanguage"
|
0, "startlanguage"
|
||||||
]
|
]
|
||||||
if "demand" in requested_features:
|
if (
|
||||||
|
("demand" in requested_features)
|
||||||
|
or ("control" in requested_features)
|
||||||
|
or ("demand_control_ratio" in requested_features)
|
||||||
|
):
|
||||||
participant_info_t = participant_info.T
|
participant_info_t = participant_info.T
|
||||||
rows_baseline = participant_info_t.index
|
rows_baseline = participant_info_t.index
|
||||||
|
|
||||||
|
if ("demand" in requested_features) or (
|
||||||
|
"demand_control_ratio" in requested_features
|
||||||
|
):
|
||||||
# Find questions about demand, but disregard time (duration of filling in questionnaire)
|
# Find questions about demand, but disregard time (duration of filling in questionnaire)
|
||||||
rows_demand = rows_baseline.str.startswith(
|
rows_demand = rows_baseline.str.startswith(
|
||||||
JCQ_DEMAND
|
JCQ_DEMAND
|
||||||
) & ~rows_baseline.str.endswith("Time")
|
) & ~rows_baseline.str.endswith("Time")
|
||||||
limesurvey_control = (
|
limesurvey_demand = (
|
||||||
participant_info_t[rows_demand]
|
participant_info_t[rows_demand]
|
||||||
.reset_index()
|
.reset_index()
|
||||||
.rename(columns={"index": "question", 0: "score_original"})
|
.rename(columns={"index": "question", 0: "score_original"})
|
||||||
)
|
)
|
||||||
# Extract question IDs from names such as JobEisen[3]
|
# Extract question IDs from names such as JobEisen[3]
|
||||||
|
limesurvey_demand.loc[:, "qid"] = (
|
||||||
|
limesurvey_demand["question"].str.extract(r"\[(\d+)\]").astype(int)
|
||||||
|
)
|
||||||
|
limesurvey_demand["score"] = limesurvey_demand["score_original"]
|
||||||
|
# Identify rows that include questions to be reversed.
|
||||||
|
rows_demand_reverse = limesurvey_demand["qid"].isin(
|
||||||
|
dict_JCQ_demand_control_reverse[JCQ_DEMAND].keys()
|
||||||
|
)
|
||||||
|
# Reverse the score, so that the maximum value becomes the minimum etc.
|
||||||
|
limesurvey_demand.loc[rows_demand_reverse, "score"] = (
|
||||||
|
LIMESURVEY_JCQ_MAX
|
||||||
|
+ LIMESURVEY_JCQ_MIN
|
||||||
|
- limesurvey_demand.loc[rows_demand_reverse, "score_original"]
|
||||||
|
)
|
||||||
|
# TODO Write to data/interim
|
||||||
|
if "demand" in requested_features:
|
||||||
|
baseline_features.loc[0, "limesurvey_demand"] = limesurvey_demand[
|
||||||
|
"score"
|
||||||
|
].sum()
|
||||||
|
|
||||||
|
if ("control" in requested_features) or (
|
||||||
|
"demand_control_ratio" in requested_features
|
||||||
|
):
|
||||||
|
# Find questions about control, but disregard time (duration of filling in questionnaire)
|
||||||
|
rows_control = rows_baseline.str.startswith(
|
||||||
|
JCQ_CONTROL
|
||||||
|
) & ~rows_baseline.str.endswith("Time")
|
||||||
|
limesurvey_control = (
|
||||||
|
participant_info_t[rows_control]
|
||||||
|
.reset_index()
|
||||||
|
.rename(columns={"index": "question", 0: "score_original"})
|
||||||
|
)
|
||||||
|
# Extract question IDs from names such as JobControle[3]
|
||||||
limesurvey_control.loc[:, "qid"] = (
|
limesurvey_control.loc[:, "qid"] = (
|
||||||
limesurvey_control["question"].str.extract(r"\[(\d+)\]").astype(int)
|
limesurvey_control["question"].str.extract(r"\[(\d+)\]").astype(int)
|
||||||
)
|
)
|
||||||
limesurvey_control["score"] = limesurvey_control["score_original"]
|
limesurvey_control["score"] = limesurvey_control["score_original"]
|
||||||
# Identify rows that include questions to be reversed.
|
# Identify rows that include questions to be reversed.
|
||||||
rows_demand_reverse = limesurvey_control["qid"].isin(
|
rows_control_reverse = limesurvey_control["qid"].isin(
|
||||||
dict_JCQ_demand_control_reverse[JCQ_DEMAND].keys()
|
dict_JCQ_demand_control_reverse[JCQ_CONTROL].keys()
|
||||||
)
|
)
|
||||||
# Reverse the score, so that the maximum value becomes the minimum etc.
|
# Reverse the score, so that the maximum value becomes the minimum etc.
|
||||||
limesurvey_control.loc[rows_demand_reverse, "score"] = (
|
limesurvey_control.loc[rows_control_reverse, "score"] = (
|
||||||
LIMESURVEY_JCQ_MAX
|
LIMESURVEY_JCQ_MAX
|
||||||
+ LIMESURVEY_JCQ_MIN
|
+ LIMESURVEY_JCQ_MIN
|
||||||
- limesurvey_control.loc[rows_demand_reverse, "score_original"]
|
- limesurvey_control.loc[rows_control_reverse, "score_original"]
|
||||||
)
|
)
|
||||||
# TODO Write to data/interim
|
# TODO Write to data/interim
|
||||||
baseline_features.loc[0, "limesurvey_demand"] = limesurvey_control[
|
if "control" in requested_features:
|
||||||
|
baseline_features.loc[0, "limesurvey_control"] = limesurvey_control[
|
||||||
"score"
|
"score"
|
||||||
].sum()
|
].sum()
|
||||||
|
|
||||||
|
if "demand_control_ratio" in requested_features:
|
||||||
|
limesurvey_demand_control_ratio = (
|
||||||
|
limesurvey_demand["score"].sum() / limesurvey_control["score"].sum()
|
||||||
|
)
|
||||||
|
if (
|
||||||
|
JCQ_NORMS[participant_info.loc[0, "gender"]][0]
|
||||||
|
<= limesurvey_demand_control_ratio
|
||||||
|
< JCQ_NORMS[participant_info.loc[0, "gender"]][1]
|
||||||
|
):
|
||||||
|
limesurvey_quartile = 1
|
||||||
|
elif (
|
||||||
|
JCQ_NORMS[participant_info.loc[0, "gender"]][1]
|
||||||
|
<= limesurvey_demand_control_ratio
|
||||||
|
< JCQ_NORMS[participant_info.loc[0, "gender"]][2]
|
||||||
|
):
|
||||||
|
limesurvey_quartile = 2
|
||||||
|
elif (
|
||||||
|
JCQ_NORMS[participant_info.loc[0, "gender"]][2]
|
||||||
|
<= limesurvey_demand_control_ratio
|
||||||
|
< JCQ_NORMS[participant_info.loc[0, "gender"]][3]
|
||||||
|
):
|
||||||
|
limesurvey_quartile = 3
|
||||||
|
elif (
|
||||||
|
JCQ_NORMS[participant_info.loc[0, "gender"]][3]
|
||||||
|
<= limesurvey_demand_control_ratio
|
||||||
|
< JCQ_NORMS[participant_info.loc[0, "gender"]][4]
|
||||||
|
):
|
||||||
|
limesurvey_quartile = 4
|
||||||
|
else:
|
||||||
|
limesurvey_quartile = np.nan
|
||||||
|
|
||||||
|
baseline_features.loc[
|
||||||
|
0, "limesurvey_demand_control_ratio"
|
||||||
|
] = limesurvey_demand_control_ratio
|
||||||
|
baseline_features.loc[
|
||||||
|
0, "limesurvey_demand_control_ratio_quartile"
|
||||||
|
] = limesurvey_quartile
|
||||||
|
|
||||||
baseline_features.to_csv(
|
baseline_features.to_csv(
|
||||||
snakemake.output[0], index=False, encoding="utf-8",
|
snakemake.output[0], index=False, encoding="utf-8",
|
||||||
|
|
Loading…
Reference in New Issue