Drop NaN targets.
This mirrors INNER join in merge_features_and_targets_for_individual_model.py: data = pd.concat([sensor_features, targets[["target"]]], axis=1, join="inner")labels
parent
9f5edf1c2b
commit
a6a37c7bd9
|
@ -6,5 +6,6 @@ cleaned_sensor_features = pd.read_csv(snakemake.input["cleaned_sensor_features"]
|
||||||
target_variable_name = snakemake.params["target_variable"]
|
target_variable_name = snakemake.params["target_variable"]
|
||||||
|
|
||||||
model_input = retain_target_column(cleaned_sensor_features, target_variable_name)
|
model_input = retain_target_column(cleaned_sensor_features, target_variable_name)
|
||||||
|
model_input.dropna(axis ="index", how="any", subset=["target"], inplace=True)
|
||||||
|
|
||||||
model_input.to_csv(snakemake.output[0], index=False)
|
model_input.to_csv(snakemake.output[0], index=False)
|
||||||
|
|
Loading…
Reference in New Issue