Add comments for event_related_script understanding.
parent
74b454b07b
commit
a543ce372f
|
@ -10,6 +10,15 @@ from esm import classify_sessions_by_completion_time, preprocess_esm
|
||||||
input_data_files = dict(snakemake.input)
|
input_data_files = dict(snakemake.input)
|
||||||
|
|
||||||
def format_timestamp(x):
|
def format_timestamp(x):
|
||||||
|
"""This method formates inputed timestamp into format "HH MM SS". Including spaces. If there is no hours or minutes present
|
||||||
|
that part is ignored, e.g., "MM SS" or just "SS".
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (int): unix timestamp in seconds
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: formatted timestamp using "HH MM SS" sintax
|
||||||
|
"""
|
||||||
tstring=""
|
tstring=""
|
||||||
space = False
|
space = False
|
||||||
if x//3600 > 0:
|
if x//3600 > 0:
|
||||||
|
@ -23,8 +32,23 @@ def format_timestamp(x):
|
||||||
return tstring
|
return tstring
|
||||||
|
|
||||||
|
|
||||||
def extract_ers(esm_df, device_id):
|
def extract_ers(esm_df):
|
||||||
|
"""This method has two major functionalities:
|
||||||
|
(1) It prepares STRAW event-related segments file with the use of esm file. The execution protocol is depended on
|
||||||
|
the targets method specified in the config.yaml file.
|
||||||
|
(2) It prepares and writes csv with targets and corresponding time segments labels. This is later used
|
||||||
|
in the overall cleaning script (straw).
|
||||||
|
|
||||||
|
Details about each target method are listed below by each corresponding condition. Refer to the RAPIDS documentation for the
|
||||||
|
ERS file format: https://www.rapids.science/1.9/setup/configuration/#time-segments -> event segments
|
||||||
|
|
||||||
|
Args:
|
||||||
|
esm_df (DataFrame): read esm file that is dependend on the current participant.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
extracted_ers (DataFrame): dataframe with all necessary information to write event-related segments file
|
||||||
|
in the correct format.
|
||||||
|
"""
|
||||||
pd.set_option("display.max_rows", 20)
|
pd.set_option("display.max_rows", 20)
|
||||||
pd.set_option("display.max_columns", None)
|
pd.set_option("display.max_columns", None)
|
||||||
|
|
||||||
|
@ -42,6 +66,10 @@ def extract_ers(esm_df, device_id):
|
||||||
|
|
||||||
targets_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["TARGETS_METHOD"]
|
targets_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["TARGETS_METHOD"]
|
||||||
if targets_method in ["30_before", "90_before"]: # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
|
if targets_method in ["30_before", "90_before"]: # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
|
||||||
|
""" '30-minutes and 90-minutes before' have the same fundamental logic with couple of deviations that will be explained below.
|
||||||
|
Both take x-minute period before the questionnaire that is summed with the questionnaire duration.
|
||||||
|
All questionnaire durations over 15 minutes are excluded from the querying.
|
||||||
|
"""
|
||||||
# Extract time-relevant information
|
# Extract time-relevant information
|
||||||
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # questionnaire length
|
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # questionnaire length
|
||||||
extracted_ers["label"] = f"straw_event_{targets_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
extracted_ers["label"] = f"straw_event_{targets_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
||||||
|
@ -50,6 +78,9 @@ def extract_ers(esm_df, device_id):
|
||||||
extracted_ers["shift_direction"] = -1
|
extracted_ers["shift_direction"] = -1
|
||||||
|
|
||||||
if targets_method == "30_before":
|
if targets_method == "30_before":
|
||||||
|
"""The method 30-minutes before simply takes 30 minutes before the questionnaire and sums it with the questionnaire duration.
|
||||||
|
The timestamps are formatted with the help of format_timestamp() method.
|
||||||
|
"""
|
||||||
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
|
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
|
||||||
|
|
||||||
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
|
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
|
||||||
|
@ -57,6 +88,9 @@ def extract_ers(esm_df, device_id):
|
||||||
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
|
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
|
||||||
|
|
||||||
elif targets_method == "90_before":
|
elif targets_method == "90_before":
|
||||||
|
"""The method 90-minutes before has an important condition. If the time between the current and the previous questionnaire is
|
||||||
|
longer then 90 minutes it takes 90 minutes, otherwise it takes the original time difference between the questionnaires.
|
||||||
|
"""
|
||||||
time_before_questionnaire = 90 * 60 # in seconds (90 minutes)
|
time_before_questionnaire = 90 * 60 # in seconds (90 minutes)
|
||||||
|
|
||||||
extracted_ers[['end_event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].max().reset_index()[['timestamp', 'device_id']]
|
extracted_ers[['end_event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].max().reset_index()[['timestamp', 'device_id']]
|
||||||
|
@ -70,6 +104,17 @@ def extract_ers(esm_df, device_id):
|
||||||
extracted_ers["shift"] = extracted_ers["diffs"].apply(lambda x: format_timestamp(x))
|
extracted_ers["shift"] = extracted_ers["diffs"].apply(lambda x: format_timestamp(x))
|
||||||
|
|
||||||
elif targets_method == "stress_event":
|
elif targets_method == "stress_event":
|
||||||
|
"""This is a special case of the method as it consists of two important parts:
|
||||||
|
(1) Generating of the ERS file (same as the methods above) and
|
||||||
|
(2) Generating targets file alongside with the correct time segment labels.
|
||||||
|
|
||||||
|
This extracts event-related segments, depended on the event time and duration specified by the participant in the next
|
||||||
|
questionnaire. Additionally, 5 minutes before the specified start time of this event is taken to take into a account the
|
||||||
|
possiblity of the participant not remembering the start time percisely => this parameter can be manipulated with the variable
|
||||||
|
"time_before_event" which is defined below.
|
||||||
|
|
||||||
|
By default, this method also excludes all events that are longer then 2.5 hours so that the segments are easily comparable.
|
||||||
|
"""
|
||||||
# Get and join required data
|
# Get and join required data
|
||||||
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index().rename(columns={'timestamp': 'session_length'}) # questionnaire end timestamp
|
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index().rename(columns={'timestamp': 'session_length'}) # questionnaire end timestamp
|
||||||
extracted_ers = extracted_ers[extracted_ers["session_length"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
|
extracted_ers = extracted_ers[extracted_ers["session_length"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
|
||||||
|
@ -83,7 +128,9 @@ def extract_ers(esm_df, device_id):
|
||||||
.join(se_duration, on=['device_id', 'esm_session'], how='inner') \
|
.join(se_duration, on=['device_id', 'esm_session'], how='inner') \
|
||||||
.join(se_intensity, on=['device_id', 'esm_session'], how='inner')
|
.join(se_intensity, on=['device_id', 'esm_session'], how='inner')
|
||||||
|
|
||||||
# Filter sessions that are not useful
|
# Filter sessions that are not useful. Because of the ambiguity this excludes:
|
||||||
|
# (1) straw event times that are marked as "0 - I don't remember"
|
||||||
|
# (2) straw event durations that are marked as "0 - I don't remember"
|
||||||
extracted_ers = extracted_ers[(~extracted_ers.se_time.str.startswith("0 - ")) & (~extracted_ers.se_duration.str.startswith("0 - "))]
|
extracted_ers = extracted_ers[(~extracted_ers.se_time.str.startswith("0 - ")) & (~extracted_ers.se_duration.str.startswith("0 - "))]
|
||||||
|
|
||||||
# Transform data into its final form, ready for the extraction
|
# Transform data into its final form, ready for the extraction
|
||||||
|
@ -93,22 +140,27 @@ def extract_ers(esm_df, device_id):
|
||||||
extracted_ers['event_timestamp'] = pd.to_datetime(extracted_ers['se_time']).apply(lambda x: x.timestamp() * 1000).astype('int64')
|
extracted_ers['event_timestamp'] = pd.to_datetime(extracted_ers['se_time']).apply(lambda x: x.timestamp() * 1000).astype('int64')
|
||||||
extracted_ers['shift_direction'] = -1
|
extracted_ers['shift_direction'] = -1
|
||||||
|
|
||||||
|
# Checks whether the duration is marked with "1 - It's still ongoing" which means that the end of the current questionnaire
|
||||||
|
# is taken as end time of the segment. Else the user input duration is taken.
|
||||||
extracted_ers['se_duration'] = \
|
extracted_ers['se_duration'] = \
|
||||||
np.where(
|
np.where(
|
||||||
extracted_ers['se_duration'].str.startswith("1 - "),
|
extracted_ers['se_duration'].str.startswith("1 - "),
|
||||||
extracted_ers['session_end_timestamp'] - extracted_ers['event_timestamp'],
|
extracted_ers['session_end_timestamp'] - extracted_ers['event_timestamp'],
|
||||||
extracted_ers['se_duration']
|
extracted_ers['se_duration']
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# This converts the rows of timestamps in miliseconds and the row with datetime to timestamp in seconds.
|
||||||
extracted_ers['se_duration'] = \
|
extracted_ers['se_duration'] = \
|
||||||
extracted_ers['se_duration'].apply(lambda x: math.ceil(x / 1000) if isinstance(x, int) else (pd.to_datetime(x).hour * 60 + pd.to_datetime(x).minute) * 60) + time_before_event
|
extracted_ers['se_duration'].apply(lambda x: math.ceil(x / 1000) if isinstance(x, int) else (pd.to_datetime(x).hour * 60 + pd.to_datetime(x).minute) * 60) + time_before_event
|
||||||
|
|
||||||
extracted_ers = extracted_ers[extracted_ers["se_duration"] <= 2.5 * 60 * 60].reset_index(drop=True) # Exclude events that are longer than 2.5 hours
|
# Exclude events that are longer than 2.5 hours
|
||||||
|
extracted_ers = extracted_ers[extracted_ers["se_duration"] <= 2.5 * 60 * 60].reset_index(drop=True)
|
||||||
|
|
||||||
extracted_ers["label"] = f"straw_event_{targets_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
extracted_ers["label"] = f"straw_event_{targets_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
||||||
extracted_ers['shift'] = format_timestamp(time_before_event)
|
extracted_ers['shift'] = format_timestamp(time_before_event)
|
||||||
extracted_ers['length'] = extracted_ers['se_duration'].apply(lambda x: format_timestamp(x))
|
extracted_ers['length'] = extracted_ers['se_duration'].apply(lambda x: format_timestamp(x))
|
||||||
|
|
||||||
|
# Write the csv of extracted ERS labels with targets (stress event intensity)
|
||||||
extracted_ers[["label", "intensity"]].to_csv(snakemake.output[1], index=False)
|
extracted_ers[["label", "intensity"]].to_csv(snakemake.output[1], index=False)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
@ -118,14 +170,20 @@ def extract_ers(esm_df, device_id):
|
||||||
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
|
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
|
||||||
|
|
||||||
|
|
||||||
# Actual code execution
|
"""
|
||||||
|
Here the code is executed - this .py file is used both for extraction of the STRAW time_segments file for the individual
|
||||||
|
participant, and also for merging all participant's files into one combined file which is later used for assignments of the
|
||||||
|
time segments to all sensors.
|
||||||
|
|
||||||
|
There are two files involved (see rules extract_event_information_from_esm and merge_event_related_segments_files in preprocessing.smk)
|
||||||
|
(1) ERS file which contains all the information about the time segment timings and
|
||||||
|
(2) targets file which has corresponding target value for the segment label which is later used to merge with other features in the cleaning script.
|
||||||
|
For more information, see the comment in the method above.
|
||||||
|
"""
|
||||||
if snakemake.params["stage"] == "extract":
|
if snakemake.params["stage"] == "extract":
|
||||||
esm_df = pd.read_csv(input_data_files['esm_raw_input'])
|
esm_df = pd.read_csv(input_data_files['esm_raw_input'])
|
||||||
|
|
||||||
with open(input_data_files['pid_file'], 'r') as stream:
|
extracted_ers = extract_ers(esm_df)
|
||||||
pid_file = yaml.load(stream, Loader=yaml.FullLoader)
|
|
||||||
|
|
||||||
extracted_ers = extract_ers(esm_df, pid_file["PHONE"]["DEVICE_IDS"][0])
|
|
||||||
|
|
||||||
extracted_ers.to_csv(snakemake.output[0], index=False)
|
extracted_ers.to_csv(snakemake.output[0], index=False)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue