Added CF for HRV and shortened test data
parent
470993eeb0
commit
a357138f6e
|
@ -541,9 +541,14 @@ EMPATICA_BLOOD_VOLUME_PULSE:
|
|||
CONTAINER: BVP
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: False
|
||||
FEATURES: ["maxbvp", "minbvp", "avgbvp", "medianbvp", "modebvp", "stdbvp", "diffmaxmodebvp", "diffminmodebvp", "entropybvp"]
|
||||
COMPUTE: True
|
||||
FEATURES: ["fqHighestPeakFreqs", "fqHighestPeaks", "fqEnergyFeat", "fqEntropyFeat", "fqHistogramBins","fqAbsMean", "fqSkewness", "fqKurtosis", "fqInterquart", # Freq features
|
||||
"maxbvp", "minbvp", "avgbvp", "medianbvp", "modebvp", "stdbvp", "diffmaxmodebvp", "diffminmodebvp", "entropybvp"] # HRV features
|
||||
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/dbdp/main.py
|
||||
CF:
|
||||
COMPUTE: True
|
||||
FEATURES: ['meanHr', 'ibi', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'sd', 'sd2', 'sd1/sd2', 'numRR']
|
||||
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cf/main.py
|
||||
|
||||
# See https://www.rapids.science/latest/features/empatica-inter-beat-interval/
|
||||
EMPATICA_INTER_BEAT_INTERVAL:
|
||||
|
|
Binary file not shown.
|
@ -0,0 +1,54 @@
|
|||
import pandas as pd
|
||||
from scipy.stats import entropy
|
||||
|
||||
from CalculatingFeatures.helper_functions import convertInputInto2d, hrvFeatureNames, frequencyFeatureNames
|
||||
from CalculatingFeatures.calculate_features import calculateFeatures
|
||||
|
||||
import sys
|
||||
|
||||
|
||||
def getSampleRate(data):
|
||||
try:
|
||||
timestamps_diff = data['timestamp'].diff().dropna().mean()
|
||||
except:
|
||||
raise Exception("Error occured while trying to get the mean sample rate from the data.")
|
||||
|
||||
return 1000/timestamps_diff
|
||||
|
||||
def extractBVPFeaturesFromIntradayData(bvp_intraday_data, features, time_segment, filter_data_by_segment):
|
||||
bvp_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
|
||||
|
||||
if not bvp_intraday_data.empty:
|
||||
sample_rate = getSampleRate(bvp_intraday_data)
|
||||
|
||||
bvp_intraday_data = filter_data_by_segment(bvp_intraday_data, time_segment)
|
||||
|
||||
if not bvp_intraday_data.empty:
|
||||
|
||||
bvp_intraday_features = pd.DataFrame()
|
||||
|
||||
# apply methods from calculate features module
|
||||
bvp_intraday_features = \
|
||||
bvp_intraday_data.groupby('local_segment').apply(\
|
||||
lambda x: calculateFeatures(convertInputInto2d(x['blood_volume_pulse'], x.shape[0]), fs=int(sample_rate), featureNames=features))
|
||||
|
||||
bvp_intraday_features.reset_index(inplace=True)
|
||||
|
||||
return bvp_intraday_features
|
||||
|
||||
|
||||
def cf_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
bvp_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
|
||||
requested_intraday_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_intraday_features_names = hrvFeatureNames + frequencyFeatureNames
|
||||
# the subset of requested features this function can compute
|
||||
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
|
||||
|
||||
# extract features from intraday data
|
||||
bvp_intraday_features = extractBVPFeaturesFromIntradayData(bvp_intraday_data,
|
||||
intraday_features_to_compute, time_segment,
|
||||
filter_data_by_segment)
|
||||
|
||||
return bvp_intraday_features
|
Loading…
Reference in New Issue