Split FITBIT_HEARTRATE into FITBIT_HEARTRATE_SUMMARY and FITBIT_HEARTRATE_INTRADAY

pull/103/head
Meng Li 2020-11-11 17:27:46 -05:00
parent a94866e83d
commit 9fc36f67e2
7 changed files with 180 additions and 104 deletions

View File

@ -144,9 +144,6 @@ for provider in config["PHONE_LOCATIONS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/interim/{pid}/phone_locations_features/phone_locations_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["PHONE_LOCATIONS"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_locations.csv", pid=config["PIDS"]))
if config["FITBIT_HEARTRATE"]["TABLE_FORMAT"] not in ["JSON", "CSV"]:
raise ValueError("config['FITBIT_HEARTRATE']['TABLE_FORMAT'] should be JSON or CSV but you typed" + config["FITBIT_HEARTRATE"]["TABLE_FORMAT"])
if config["FITBIT_STEPS"]["TABLE_FORMAT"] not in ["JSON", "CSV"]:
raise ValueError("config['FITBIT_STEPS']['TABLE_FORMAT'] should be JSON or CSV but you typed" + config["FITBIT_STEPS"]["TABLE_FORMAT"])
@ -156,13 +153,22 @@ if config["FITBIT_CALORIES"]["TABLE_FORMAT"] not in ["JSON", "CSV"]:
if config["FITBIT_SLEEP"]["TABLE_FORMAT"] not in ["JSON", "CSV"]:
raise ValueError("config['FITBIT_SLEEP']['TABLE_FORMAT'] should be JSON or CSV but you typed" + config["FITBIT_SLEEP"]["TABLE_FORMAT"])
for provider in config["FITBIT_HEARTRATE"]["PROVIDERS"].keys():
if config["FITBIT_HEARTRATE"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_raw.csv", pid=config["PIDS"], fitbit_data_type=(["json"] if config["FITBIT_HEARTRATE"]["TABLE_FORMAT"] == "JSON" else ["summary", "intraday"])))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_parsed.csv", pid=config["PIDS"], fitbit_data_type=["summary", "intraday"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_parsed_with_datetime.csv", pid=config["PIDS"], fitbit_data_type=["summary", "intraday"]))
files_to_compute.extend(expand("data/interim/{pid}/fitbit_heartrate_features/fitbit_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["FITBIT_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/fitbit_heartrate.csv", pid=config["PIDS"]))
for provider in config["FITBIT_HEARTRATE_SUMMARY"]["PROVIDERS"].keys():
if config["FITBIT_HEARTRATE_SUMMARY"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_summary_raw.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_summary_parsed.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_summary_parsed_with_datetime.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/fitbit_heartrate_summary_features/fitbit_heartrate_summary_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["FITBIT_HEARTRATE_SUMMARY"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/fitbit_heartrate_summary.csv", pid=config["PIDS"]))
for provider in config["FITBIT_HEARTRATE_INTRADAY"]["PROVIDERS"].keys():
if config["FITBIT_HEARTRATE_INTRADAY"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_intraday_raw.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_intraday_parsed.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_intraday_parsed_with_datetime.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/fitbit_heartrate_intraday_features/fitbit_heartrate_intraday_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["FITBIT_HEARTRATE_INTRADAY"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/fitbit_heartrate_intraday.csv", pid=config["PIDS"]))
for provider in config["FITBIT_STEPS"]["PROVIDERS"].keys():
if config["FITBIT_STEPS"]["PROVIDERS"][provider]["COMPUTE"]:

View File

@ -44,6 +44,7 @@ DEVICE_DATA:
FITBIT:
SOURCE:
TYPE: DATABASE # DATABASE or FILES (set each FITBIT_SENSOR TABLE attribute accordingly with a table name or a file path)
COLUMN_FORMAT: JSON # JSON or PLAIN_TEXT
DATABASE_GROUP: *database_group
DEVICE_ID_COLUMN: device_id # column name
TIMEZONE:
@ -258,20 +259,22 @@ PHONE_CONVERSATION:
############## FITBIT ##########################################################
################################################################################
FITBIT_HEARTRATE:
TABLE_FORMAT: JSON # JSON or CSV. If your JSON or CSV data are files change [DEVICE_DATA][FITBIT][SOURCE][TYPE] to FILES
TABLE:
JSON: fitbit_heartrate
CSV:
SUMMARY: heartrate_summary
INTRADAY: heartrate_intraday
FITBIT_HEARTRATE_SUMMARY:
TABLE: heartrate_summary
PROVIDERS:
RAPIDS:
COMPUTE: False
FEATURES:
SUMMARY: ["maxrestinghr", "minrestinghr", "avgrestinghr", "medianrestinghr", "moderestinghr", "stdrestinghr", "diffmaxmoderestinghr", "diffminmoderestinghr", "entropyrestinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. height, weight) use these with care: ["sumcaloriesoutofrange", "maxcaloriesoutofrange", "mincaloriesoutofrange", "avgcaloriesoutofrange", "mediancaloriesoutofrange", "stdcaloriesoutofrange", "entropycaloriesoutofrange", "sumcaloriesfatburn", "maxcaloriesfatburn", "mincaloriesfatburn", "avgcaloriesfatburn", "mediancaloriesfatburn", "stdcaloriesfatburn", "entropycaloriesfatburn", "sumcaloriescardio", "maxcaloriescardio", "mincaloriescardio", "avgcaloriescardio", "mediancaloriescardio", "stdcaloriescardio", "entropycaloriescardio", "sumcaloriespeak", "maxcaloriespeak", "mincaloriespeak", "avgcaloriespeak", "mediancaloriespeak", "stdcaloriespeak", "entropycaloriespeak"]
INTRADAY: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
SRC_FOLDER: "rapids" # inside src/features/fitbit_heartrate
FEATURES: ["maxrestinghr", "minrestinghr", "avgrestinghr", "medianrestinghr", "moderestinghr", "stdrestinghr", "diffmaxmoderestinghr", "diffminmoderestinghr", "entropyrestinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. height, weight) use these with care: ["sumcaloriesoutofrange", "maxcaloriesoutofrange", "mincaloriesoutofrange", "avgcaloriesoutofrange", "mediancaloriesoutofrange", "stdcaloriesoutofrange", "entropycaloriesoutofrange", "sumcaloriesfatburn", "maxcaloriesfatburn", "mincaloriesfatburn", "avgcaloriesfatburn", "mediancaloriesfatburn", "stdcaloriesfatburn", "entropycaloriesfatburn", "sumcaloriescardio", "maxcaloriescardio", "mincaloriescardio", "avgcaloriescardio", "mediancaloriescardio", "stdcaloriescardio", "entropycaloriescardio", "sumcaloriespeak", "maxcaloriespeak", "mincaloriespeak", "avgcaloriespeak", "mediancaloriespeak", "stdcaloriespeak", "entropycaloriespeak"]
SRC_FOLDER: "rapids" # inside src/features/fitbit_heartrate_summary
SRC_LANGUAGE: "python"
FITBIT_HEARTRATE_INTRADAY:
TABLE: heartrate_intraday
PROVIDERS:
RAPIDS:
COMPUTE: False
FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
SRC_FOLDER: "rapids" # inside src/features/fitbit_heartrate_intraday
SRC_LANGUAGE: "python"
FITBIT_STEPS:

View File

@ -372,29 +372,55 @@ rule phone_wifi_visible_r_features:
script:
"../src/features/entry.R"
rule fitbit_heartrate_python_features:
rule fitbit_heartrate_summary_python_features:
input:
sensor_data = expand("data/raw/{{pid}}/fitbit_heartrate_{fitbit_data_type}_parsed_with_datetime.csv", fitbit_data_type=["summary", "intraday"]),
sensor_data = "data/raw/{pid}/fitbit_heartrate_summary_parsed_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
provider = lambda wildcards: config["FITBIT_HEARTRATE"]["PROVIDERS"][wildcards.provider_key.upper()],
provider = lambda wildcards: config["FITBIT_HEARTRATE_SUMMARY"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "fitbit_heartrate"
sensor_key = "fitbit_heartrate_summary"
output:
"data/interim/{pid}/fitbit_heartrate_features/fitbit_heartrate_python_{provider_key}.csv"
"data/interim/{pid}/fitbit_heartrate_summary_features/fitbit_heartrate_summary_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule fitbit_heartrate_r_features:
rule fitbit_heartrate_summary_r_features:
input:
sensor_data = expand("data/raw/{{pid}}/fitbit_heartrate_{fitbit_data_type}_parsed_with_datetime.csv", fitbit_data_type=["summary", "intraday"]),
sensor_data = "data/raw/{pid}/fitbit_heartrate_summary_parsed_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
provider = lambda wildcards: config["FITBIT_HEARTRATE"]["PROVIDERS"][wildcards.provider_key.upper()],
provider = lambda wildcards: config["FITBIT_HEARTRATE_SUMMARY"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "fitbit_heartrate"
sensor_key = "fitbit_heartrate_summary"
output:
"data/interim/{pid}/fitbit_heartrate_features/fitbit_heartrate_r_{provider_key}.csv"
"data/interim/{pid}/fitbit_heartrate_summary_features/fitbit_heartrate_summary_r_{provider_key}.csv"
script:
"../src/features/entry.R"
rule fitbit_heartrate_intraday_python_features:
input:
sensor_data = "data/raw/{pid}/fitbit_heartrate_intraday_parsed_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
provider = lambda wildcards: config["FITBIT_HEARTRATE_INTRADAY"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "fitbit_heartrate_intraday"
output:
"data/interim/{pid}/fitbit_heartrate_intraday_features/fitbit_heartrate_intraday_python_{provider_key}.csv"
script:
"../src/features/entry.py"
rule fitbit_heartrate_intraday_r_features:
input:
sensor_data = "data/raw/{pid}/fitbit_heartrate_intraday_parsed_with_datetime.csv",
day_segments_labels = "data/interim/day_segments/{pid}_day_segments_labels.csv"
params:
provider = lambda wildcards: config["FITBIT_HEARTRATE_INTRADAY"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
sensor_key = "fitbit_heartrate_intraday"
output:
"data/interim/{pid}/fitbit_heartrate_intraday_features/fitbit_heartrate_intraday_r_{provider_key}.csv"
script:
"../src/features/entry.R"
@ -424,19 +450,6 @@ rule fitbit_steps_r_features:
script:
"../src/features/entry.R"
# rule fitbit_heartrate_features:
# input:
# heartrate_summary_data = "data/raw/{pid}/fitbit_heartrate_summary_with_datetime.csv",
# heartrate_intraday_data = "data/raw/{pid}/fitbit_heartrate_intraday_with_datetime.csv"
# params:
# day_segment = "{day_segment}",
# summary_features = config["HEARTRATE"]["SUMMARY_FEATURES"],
# intraday_features = config["HEARTRATE"]["INTRADAY_FEATURES"]
# output:
# "data/processed/{pid}/fitbit_heartrate_{day_segment}.csv"
# script:
# "../src/features/fitbit_heartrate_features.py"
# rule fitbit_step_features:
# input:
# step_data = "data/raw/{pid}/fitbit_step_intraday_with_datetime.csv",

View File

@ -40,14 +40,13 @@ rule download_phone_data:
rule download_fitbit_data:
input:
participant_file = "data/external/participant_files/{pid}.yaml",
input_file = [] if config["DEVICE_DATA"]["FITBIT"]["SOURCE"]["TYPE"] == "DATABASE" else lambda wildcards: config["FITBIT_" + str(wildcards.sensor).upper()]["TABLE"]["CSV"][str(wildcards.fitbit_data_type).upper()]
input_file = [] if config["DEVICE_DATA"]["FITBIT"]["SOURCE"]["TYPE"] == "DATABASE" else lambda wildcards: config["FITBIT_" + str(wildcards.sensor).upper()]["TABLE"]
params:
source = config["DEVICE_DATA"]["FITBIT"]["SOURCE"],
sensor = "fitbit_" + "{sensor}",
fitbit_data_type = "{fitbit_data_type}",
table = lambda wildcards: config["FITBIT_" + str(wildcards.sensor).upper()]["TABLE"],
output:
"data/raw/{pid}/fitbit_{sensor}_{fitbit_data_type}_raw.csv"
"data/raw/{pid}/fitbit_{sensor}_raw.csv"
script:
"../src/data/download_fitbit_data.R"
@ -183,14 +182,14 @@ rule phone_application_categories:
rule fitbit_parse_heartrate:
input:
data = expand("data/raw/{{pid}}/fitbit_heartrate_{fitbit_data_type}_raw.csv", fitbit_data_type = (["json"] if config["FITBIT_HEARTRATE"]["TABLE_FORMAT"] == "JSON" else ["summary", "intraday"]))
"data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_raw.csv"
params:
timezone = config["DEVICE_DATA"]["PHONE"]["TIMEZONE"]["VALUE"],
table = config["FITBIT_HEARTRATE"]["TABLE"],
table_format = config["FITBIT_HEARTRATE"]["TABLE_FORMAT"]
column_format = config["DEVICE_DATA"]["FITBIT"]["SOURCE"]["COLUMN_FORMAT"],
fitbit_data_type = "{fitbit_data_type}"
output:
summary_data = "data/raw/{pid}/fitbit_heartrate_summary_parsed.csv",
intraday_data = "data/raw/{pid}/fitbit_heartrate_intraday_parsed.csv"
"data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_parsed.csv"
script:
"../src/data/fitbit_parse_heartrate.py"

View File

@ -96,7 +96,7 @@ def parseHeartrateIntradayData(records_intraday, dataset, device_id, curr_date,
# def append_timestamp(data):
def parseHeartrateData(heartrate_data):
def parseHeartrateData(heartrate_data, fitbit_data_type):
if heartrate_data.empty:
return pd.DataFrame(columns=HR_SUMMARY_COLUMNS), pd.DataFrame(columns=HR_INTRADAY_COLUMNS)
device_id = heartrate_data["device_id"].iloc[0]
@ -109,29 +109,36 @@ def parseHeartrateData(heartrate_data):
record = json.loads(record) # Parse text into JSON
curr_date = datetime.strptime(record["activities-heart"][0]["dateTime"], "%Y-%m-%d")
record_summary = record["activities-heart"][0]
row_summary = parseHeartrateSummaryData(record_summary, device_id, curr_date)
records_summary.append(row_summary)
if fitbit_data_type == "summary":
record_summary = record["activities-heart"][0]
row_summary = parseHeartrateSummaryData(record_summary, device_id, curr_date)
records_summary.append(row_summary)
dataset = record["activities-heart-intraday"]["dataset"]
records_intraday = parseHeartrateIntradayData(records_intraday, dataset, device_id, curr_date, heartrate_zones_range)
if fitbit_data_type == "intraday":
dataset = record["activities-heart-intraday"]["dataset"]
records_intraday = parseHeartrateIntradayData(records_intraday, dataset, device_id, curr_date, heartrate_zones_range)
if fitbit_data_type == "summary":
parsed_data = pd.DataFrame(data=records_summary, columns=HR_SUMMARY_COLUMNS)
elif fitbit_data_type == "intraday":
parsed_data = pd.DataFrame(data=records_intraday, columns=HR_INTRADAY_COLUMNS)
else:
raise ValueError("fitbit_data_type can only be one of ['summary', 'intraday'].")
return parsed_data
return pd.DataFrame(data=records_summary, columns=HR_SUMMARY_COLUMNS), pd.DataFrame(data=records_intraday, columns=HR_INTRADAY_COLUMNS)
table_format = snakemake.params["table_format"]
timezone = snakemake.params["timezone"]
column_format = snakemake.params["column_format"]
fitbit_data_type = snakemake.params["fitbit_data_type"]
if table_format == "JSON":
if column_format == "JSON":
json_raw = pd.read_csv(snakemake.input[0])
summary, intraday = parseHeartrateData(json_raw)
elif table_format == "CSV":
summary = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time"], date_parser=lambda col: pd.to_datetime(col).tz_localize(None))
intraday = pd.read_csv(snakemake.input[1], parse_dates=["local_date_time"], date_parser=lambda col: pd.to_datetime(col).tz_localize(None))
parsed_data = parseHeartrateData(json_raw, fitbit_data_type)
elif column_format == "PLAIN_TEXT":
parsed_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time"], date_parser=lambda col: pd.to_datetime(col).tz_localize(None))
if summary.shape[0] > 0:
summary["timestamp"] = summary["local_date_time"].dt.tz_localize(timezone).astype(np.int64) // 10**6
if intraday.shape[0] > 0:
intraday["timestamp"] = intraday["local_date_time"].dt.tz_localize(timezone).astype(np.int64) // 10**6
if parsed_data.shape[0] > 0:
parsed_data["timestamp"] = parsed_data["local_date_time"].dt.tz_localize(timezone).astype(np.int64) // 10**6
summary.to_csv(snakemake.output["summary_data"], index=False)
intraday.to_csv(snakemake.output["intraday_data"], index=False)
parsed_data.to_csv(snakemake.output[0], index=False)

View File

@ -0,0 +1,79 @@
import pandas as pd
from scipy.stats import entropy
def statsFeatures(heartrate_data, features, features_type, heartrate_features):
if features_type == "hr":
col_name = "heartrate"
elif features_type == "restinghr":
col_name = "heartrate_daily_restinghr"
elif features_type == "caloriesoutofrange":
col_name = "heartrate_daily_caloriesoutofrange"
elif features_type == "caloriesfatburn":
col_name = "heartrate_daily_caloriesfatburn"
elif features_type == "caloriescardio":
col_name = "heartrate_daily_caloriescardio"
elif features_type == "caloriespeak":
col_name = "heartrate_daily_caloriespeak"
else:
raise ValueError("features_type can only be one of ['hr', 'restinghr', 'caloriesoutofrange', 'caloriesfatburn', 'caloriescardio', 'caloriespeak'].")
if "sum" + features_type in features:
heartrate_features["heartrate_rapids_sum" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].sum()
if "max" + features_type in features:
heartrate_features["heartrate_rapids_max" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max()
if "min" + features_type in features:
heartrate_features["heartrate_rapids_min" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
if "avg" + features_type in features:
heartrate_features["heartrate_rapids_avg" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].mean()
if "median" + features_type in features:
heartrate_features["heartrate_rapids_median" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].median()
if "mode" + features_type in features:
heartrate_features["heartrate_rapids_mode" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
if "std" + features_type in features:
heartrate_features["heartrate_rapids_std" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].std()
if "diffmaxmode" + features_type in features:
heartrate_features["heartrate_rapids_diffmaxmode" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].max() - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0])
if "diffminmode" + features_type in features:
heartrate_features["heartrate_rapids_diffminmode" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(lambda x: pd.Series.mode(x)[0]) - heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].min()
if "entropy" + features_type in features:
heartrate_features["heartrate_rapids_entropy" + features_type] = heartrate_data[["local_segment", col_name]].groupby(["local_segment"])[col_name].agg(entropy)
return heartrate_features
def extractHRFeaturesFromIntradayData(heartrate_intraday_data, features, day_segment, filter_data_by_segment):
heartrate_intraday_features = pd.DataFrame(columns=["local_segment"] + ["heartrate_rapids_" + x for x in features])
if not heartrate_intraday_data.empty:
num_rows_per_minute = heartrate_intraday_data.groupby(["local_date", "local_hour", "local_minute"]).count().mean()["device_id"]
heartrate_intraday_data = filter_data_by_segment(heartrate_intraday_data, day_segment)
if not heartrate_intraday_data.empty:
heartrate_intraday_features = pd.DataFrame()
# get stats of heartrate
heartrate_intraday_features = statsFeatures(heartrate_intraday_data, features, "hr", heartrate_intraday_features)
# get number of minutes in each heart rate zone
for feature_name in list(set(["minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]) & set(features)):
heartrate_zone = heartrate_intraday_data[heartrate_intraday_data["heartrate_zone"] == feature_name[9:-4]]
heartrate_intraday_features["heartrate_rapids_" + feature_name] = heartrate_zone.groupby(["local_segment"])["device_id"].count() / num_rows_per_minute
heartrate_intraday_features.fillna(value={"heartrate_rapids_" + feature_name: 0}, inplace=True)
heartrate_intraday_features.reset_index(inplace=True)
return heartrate_intraday_features
def rapids_features(sensor_data_files, day_segment, provider, filter_data_by_segment, *args, **kwargs):
heartrate_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
# name of the features this function can compute
base_intraday_features_names = ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
heartrate_intraday_features = extractHRFeaturesFromIntradayData(heartrate_intraday_data, intraday_features_to_compute, day_segment, filter_data_by_segment)
return heartrate_intraday_features

View File

@ -58,41 +58,16 @@ def extractHRFeaturesFromSummaryData(heartrate_summary_data, summary_features):
return heartrate_summary_features
def extractHRFeaturesFromIntradayData(heartrate_intraday_data, features, day_segment, filter_data_by_segment):
heartrate_intraday_features = pd.DataFrame(columns=["local_segment"] + ["heartrate_rapids_" + x for x in features])
if not heartrate_intraday_data.empty:
num_rows_per_minute = heartrate_intraday_data.groupby(["local_date", "local_hour", "local_minute"]).count().mean()["device_id"]
heartrate_intraday_data = filter_data_by_segment(heartrate_intraday_data, day_segment)
if not heartrate_intraday_data.empty:
heartrate_intraday_features = pd.DataFrame()
# get stats of heartrate
heartrate_intraday_features = statsFeatures(heartrate_intraday_data, features, "hr", heartrate_intraday_features)
# get number of minutes in each heart rate zone
for feature_name in list(set(["minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]) & set(features)):
heartrate_zone = heartrate_intraday_data[heartrate_intraday_data["heartrate_zone"] == feature_name[9:-4]]
heartrate_intraday_features["heartrate_rapids_" + feature_name] = heartrate_zone.groupby(["local_segment"])["device_id"].count() / num_rows_per_minute
heartrate_intraday_features.fillna(value={"heartrate_rapids_" + feature_name: 0}, inplace=True)
heartrate_intraday_features.reset_index(inplace=True)
return heartrate_intraday_features
def rapids_features(sensor_data_files, day_segment, provider, filter_data_by_segment, *args, **kwargs):
heartrate_summary_data = pd.read_csv(sensor_data_files["sensor_data"][0])
heartrate_intraday_data = pd.read_csv(sensor_data_files["sensor_data"][1])
heartrate_summary_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_summary_features = provider["FEATURES"]["SUMMARY"]
requested_intraday_features = provider["FEATURES"]["INTRADAY"]
requested_summary_features = provider["FEATURES"]
# name of the features this function can compute
base_summary_features_names = ["maxrestinghr", "minrestinghr", "avgrestinghr", "medianrestinghr", "moderestinghr", "stdrestinghr", "diffmaxmoderestinghr", "diffminmoderestinghr", "entropyrestinghr", "sumcaloriesoutofrange", "maxcaloriesoutofrange", "mincaloriesoutofrange", "avgcaloriesoutofrange", "mediancaloriesoutofrange", "stdcaloriesoutofrange", "entropycaloriesoutofrange", "sumcaloriesfatburn", "maxcaloriesfatburn", "mincaloriesfatburn", "avgcaloriesfatburn", "mediancaloriesfatburn", "stdcaloriesfatburn", "entropycaloriesfatburn", "sumcaloriescardio", "maxcaloriescardio", "mincaloriescardio", "avgcaloriescardio", "mediancaloriescardio", "stdcaloriescardio", "entropycaloriescardio", "sumcaloriespeak", "maxcaloriespeak", "mincaloriespeak", "avgcaloriespeak", "mediancaloriespeak", "stdcaloriespeak", "entropycaloriespeak"]
base_intraday_features_names = ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
# the subset of requested features this function can compute
summary_features_to_compute = list(set(requested_summary_features) & set(base_summary_features_names))
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from summary data
heartrate_summary_features = pd.DataFrame(columns=["local_segment"] + ["heartrate_rapids_" + x for x in summary_features_to_compute])
@ -110,10 +85,4 @@ def rapids_features(sensor_data_files, day_segment, provider, filter_data_by_seg
if not heartrate_summary_data.empty:
heartrate_summary_features = extractHRFeaturesFromSummaryData(heartrate_summary_data, summary_features_to_compute)
# extract features from intraday data
heartrate_intraday_features = extractHRFeaturesFromIntradayData(heartrate_intraday_data, intraday_features_to_compute, day_segment, filter_data_by_segment)
# merge summary features and intraday features
heartrate_features = heartrate_intraday_features.merge(heartrate_summary_features, on=["local_segment"], how="outer")
return heartrate_features
return heartrate_summary_features