Add steps summary to jsonfitbit_mysql
parent
2ea9944059
commit
9a276c1c66
|
@ -1,8 +1,8 @@
|
|||
# `fitbitjson_mysql`
|
||||
This [data stream](../../datastreams/data-streams-introduction) handles Fitbit sensor data downloaded using the [Fitbit Web API](https://dev.fitbit.com/build/reference/web-api/) and stored in a MySQL database. Please note that RAPIDS cannot query the API directly, you need to use other available tools or implement your own. Once you have your sensor data in a MySQL database, RAPIDS can process it.
|
||||
This [data stream](../../datastreams/data-streams-introduction) handles Fitbit sensor data downloaded using the [Fitbit Web API](https://dev.fitbit.com/build/reference/web-api/) and stored in a MySQL database. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your sensor data in a MySQL database, RAPIDS can process it.
|
||||
|
||||
## Container
|
||||
A MySQL database with a table per sensor, each containing the data for all participants.
|
||||
The container should be a MySQL database with a table per sensor, each containing the data for all participants.
|
||||
|
||||
The script to connect and download data from this container is at:
|
||||
```bash
|
||||
|
@ -17,16 +17,9 @@ The `format.yaml` maps and transforms columns in your raw data stream to the [ma
|
|||
src/data/streams/fitbitjson_mysql/format.yaml
|
||||
```
|
||||
|
||||
If you want RAPIDS to process Fitbit sensor data using this stream, you will need to replace the following `RAPIDS_COLUMN_MAPPINGS` inside **each sensor** section in `format.yaml` to match your raw data column names:
|
||||
If you want RAPIDS to process Fitbit sensor data using this stream, you will need to replace `[RAPIDS_COLUMN_MAPPINGS]`/`[MUTATION][COLUMN_MAPPINGS]` inside **each sensor** section in `format.yaml` to match your raw data column names:
|
||||
|
||||
| Column | Description |
|
||||
|-----------------|-----------------|
|
||||
| device_id | A string that uniquely identifies a device |
|
||||
| fitbit_data | A string column that contains the JSON objects downloaded from Fitbit's API |
|
||||
|
||||
|
||||
|
||||
??? info "FITBIT_HEARTRATE_SUMMARY section"
|
||||
??? info "FITBIT_HEARTRATE_SUMMARY"
|
||||
|
||||
**RAPIDS_COLUMN_MAPPINGS**
|
||||
|
||||
|
@ -53,3 +46,40 @@ If you want RAPIDS to process Fitbit sensor data using this stream, you will nee
|
|||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-07","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1200.6102,"max":88,"min":31,"minutes":1058,"name":"Out of Range"},{"caloriesOut":760.3020,"max":120,"min":86,"minutes":366,"name":"Fat Burn"},{"caloriesOut":15.2048,"max":146,"min":120,"minutes":2,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":72}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":68},{"time":"00:01:00","value":67},{"time":"00:02:00","value":67},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-08","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1100.1120,"max":89,"min":30,"minutes":921,"name":"Out of Range"},{"caloriesOut":660.0012,"max":118,"min":82,"minutes":361,"name":"Fat Burn"},{"caloriesOut":23.7088,"max":142,"min":108,"minutes":3,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":70}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":77},{"time":"00:01:00","value":75},{"time":"00:02:00","value":73},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-09","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":750.3615,"max":77,"min":30,"minutes":851,"name":"Out of Range"},{"caloriesOut":734.1516,"max":107,"min":77,"minutes":550,"name":"Fat Burn"},{"caloriesOut":131.8579,"max":130,"min":107,"minutes":29,"name":"Cardio"},{"caloriesOut":0,"max":220,"min":130,"minutes":0,"name":"Peak"}],"restingHeartRate":69}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":90},{"time":"00:01:00","value":89},{"time":"00:02:00","value":88},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|
||||
??? info "FITBIT_STEPS_SUMMARY"
|
||||
|
||||
**RAPIDS_COLUMN_MAPPINGS**
|
||||
|
||||
| RAPIDS column | Stream column |
|
||||
|-----------------|-----------------|
|
||||
| TIMESTAMP | FLAG_TO_MUTATE |
|
||||
| DEVICE_ID | device_id |
|
||||
| LOCAL_DATE_TIME | FLAG_TO_MUTATE |
|
||||
| STEPS | FLAG_TO_MUTATE |
|
||||
|
||||
**MUTATION**
|
||||
|
||||
- **COLUMN_MAPPINGS**
|
||||
|
||||
| Script column | Stream column |
|
||||
|-----------------|-----------------|
|
||||
| JSON_FITBIT_COLUMN | fitbit_data |
|
||||
|
||||
- **SCRIPTS**
|
||||
|
||||
```bash
|
||||
src/data/streams/mutations/fitbit/parse_steps_summary_json.py
|
||||
```
|
||||
|
||||
!!! note
|
||||
`TIMESTAMP`, `LOCAL_DATE_TIME`, and `STEPS` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:
|
||||
|
||||
??? example "Example of the expected raw data"
|
||||
|
||||
|device_id |fitbit_data |
|
||||
|---------------------------------------- |--------------------------------------------------------- |
|
||||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-07","value":"1775"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":5},{"time":"00:01:00","value":3},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-08","value":"3201"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":14},{"time":"00:01:00","value":11},{"time":"00:02:00","value":10},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-09","value":"998"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":0},{"time":"00:01:00","value":0},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}
|
||||
|
||||
|
|
|
@ -1,15 +1,24 @@
|
|||
# Mandatory Fitbit Format
|
||||
|
||||
This is a description of the format RAPIDS needs to process data for the following PHONE sensors.
|
||||
This is a description of the format RAPIDS needs to process data for the following Fitbit\ sensors.
|
||||
|
||||
??? info "FITBIT_HEARTRATE_SUMMARY"
|
||||
|
||||
| RAPIDS column | Description |
|
||||
|-----------------|-----------------|
|
||||
| LOCAL_DATE_TIME | TODO |
|
||||
| DEVICE_ID | TODO |
|
||||
| LOCAL_DATE_TIME | Date time string with format `yyyy-mm-dd hh:mm:ss` |
|
||||
| DEVICE_ID | A string that uniquely identifies a device |
|
||||
| HEARTRATE_DAILY_RESTINGHR | TODO |
|
||||
| HEARTRATE_DAILY_CALORIESOUTOFRANGE | TODO |
|
||||
| HEARTRATE_DAILY_CALORIESFATBURN | TODO |
|
||||
| HEARTRATE_DAILY_CALORIESCARDIO | TODO |
|
||||
| HEARTRATE_DAILY_CALORIESPEAK | TODO |
|
||||
|
||||
??? info "FITBIT_STEPS_SUMMARY"
|
||||
|
||||
| RAPIDS column | Description |
|
||||
|-----------------|-----------------|
|
||||
| TIMESTAMP | An UNIX timestamp (13 digits) when a row of data was logged |
|
||||
| LOCAL_DATE_TIME | Date time string with format `yyyy-mm-dd hh:mm:ss` |
|
||||
| DEVICE_ID | A string that uniquely identifies a device |
|
||||
| STEPS | Daily step count |
|
|
@ -0,0 +1,43 @@
|
|||
import json
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
|
||||
STEPS_COLUMNS = ("device_id", "steps", "local_date_time", "timestamp")
|
||||
|
||||
|
||||
def parseStepsData(steps_data):
|
||||
if steps_data.empty:
|
||||
return pd.DataFrame(columns=STEPS_COLUMNS)
|
||||
|
||||
device_id = steps_data["device_id"].iloc[0]
|
||||
records = []
|
||||
|
||||
# Parse JSON into individual records
|
||||
for record in steps_data.fitbit_data:
|
||||
record = json.loads(record) # Parse text into JSON
|
||||
if "activities-steps" in record.keys():
|
||||
curr_date = datetime.strptime(record["activities-steps"][0]["dateTime"], "%Y-%m-%d")
|
||||
|
||||
# Parse intraday data
|
||||
if "activities-steps-intraday" in record.keys():
|
||||
dataset = record["activities-steps-intraday"]["dataset"]
|
||||
for data in dataset:
|
||||
d_time = datetime.strptime(data["time"], '%H:%M:%S').time()
|
||||
d_datetime = datetime.combine(curr_date, d_time)
|
||||
|
||||
row_intraday = (device_id,
|
||||
data["value"],
|
||||
d_datetime,
|
||||
0)
|
||||
|
||||
records.append(row_intraday)
|
||||
|
||||
parsed_data = pd.DataFrame(data=records, columns=STEPS_COLUMNS)
|
||||
|
||||
return parsed_data
|
||||
|
||||
|
||||
def main(json_raw, stream_parameters):
|
||||
parsed_data = parseStepsData(json_raw)
|
||||
parsed_data["timestamp"] = None # this column is added at readable_datetime.R because we neeed to take into account multiple timezones
|
||||
return(parsed_data)
|
Loading…
Reference in New Issue