Add steps summary to jsonfitbit_mysql

pull/128/head
JulioV 2021-03-10 09:54:40 -05:00
parent 2ea9944059
commit 9a276c1c66
3 changed files with 98 additions and 16 deletions

View File

@ -1,8 +1,8 @@
# `fitbitjson_mysql` # `fitbitjson_mysql`
This [data stream](../../datastreams/data-streams-introduction) handles Fitbit sensor data downloaded using the [Fitbit Web API](https://dev.fitbit.com/build/reference/web-api/) and stored in a MySQL database. Please note that RAPIDS cannot query the API directly, you need to use other available tools or implement your own. Once you have your sensor data in a MySQL database, RAPIDS can process it. This [data stream](../../datastreams/data-streams-introduction) handles Fitbit sensor data downloaded using the [Fitbit Web API](https://dev.fitbit.com/build/reference/web-api/) and stored in a MySQL database. Please note that RAPIDS cannot query the API directly; you need to use other available tools or implement your own. Once you have your sensor data in a MySQL database, RAPIDS can process it.
## Container ## Container
A MySQL database with a table per sensor, each containing the data for all participants. The container should be a MySQL database with a table per sensor, each containing the data for all participants.
The script to connect and download data from this container is at: The script to connect and download data from this container is at:
```bash ```bash
@ -17,16 +17,9 @@ The `format.yaml` maps and transforms columns in your raw data stream to the [ma
src/data/streams/fitbitjson_mysql/format.yaml src/data/streams/fitbitjson_mysql/format.yaml
``` ```
If you want RAPIDS to process Fitbit sensor data using this stream, you will need to replace the following `RAPIDS_COLUMN_MAPPINGS` inside **each sensor** section in `format.yaml` to match your raw data column names: If you want RAPIDS to process Fitbit sensor data using this stream, you will need to replace `[RAPIDS_COLUMN_MAPPINGS]`/`[MUTATION][COLUMN_MAPPINGS]` inside **each sensor** section in `format.yaml` to match your raw data column names:
| Column | Description | ??? info "FITBIT_HEARTRATE_SUMMARY"
|-----------------|-----------------|
| device_id | A string that uniquely identifies a device |
| fitbit_data | A string column that contains the JSON objects downloaded from Fitbit's API |
??? info "FITBIT_HEARTRATE_SUMMARY section"
**RAPIDS_COLUMN_MAPPINGS** **RAPIDS_COLUMN_MAPPINGS**
@ -53,3 +46,40 @@ If you want RAPIDS to process Fitbit sensor data using this stream, you will nee
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-07","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1200.6102,"max":88,"min":31,"minutes":1058,"name":"Out of Range"},{"caloriesOut":760.3020,"max":120,"min":86,"minutes":366,"name":"Fat Burn"},{"caloriesOut":15.2048,"max":146,"min":120,"minutes":2,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":72}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":68},{"time":"00:01:00","value":67},{"time":"00:02:00","value":67},...],"datasetInterval":1,"datasetType":"minute"}} |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-07","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1200.6102,"max":88,"min":31,"minutes":1058,"name":"Out of Range"},{"caloriesOut":760.3020,"max":120,"min":86,"minutes":366,"name":"Fat Burn"},{"caloriesOut":15.2048,"max":146,"min":120,"minutes":2,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":72}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":68},{"time":"00:01:00","value":67},{"time":"00:02:00","value":67},...],"datasetInterval":1,"datasetType":"minute"}}
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-08","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1100.1120,"max":89,"min":30,"minutes":921,"name":"Out of Range"},{"caloriesOut":660.0012,"max":118,"min":82,"minutes":361,"name":"Fat Burn"},{"caloriesOut":23.7088,"max":142,"min":108,"minutes":3,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":70}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":77},{"time":"00:01:00","value":75},{"time":"00:02:00","value":73},...],"datasetInterval":1,"datasetType":"minute"}} |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-08","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":1100.1120,"max":89,"min":30,"minutes":921,"name":"Out of Range"},{"caloriesOut":660.0012,"max":118,"min":82,"minutes":361,"name":"Fat Burn"},{"caloriesOut":23.7088,"max":142,"min":108,"minutes":3,"name":"Cardio"},{"caloriesOut":0,"max":221,"min":148,"minutes":0,"name":"Peak"}],"restingHeartRate":70}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":77},{"time":"00:01:00","value":75},{"time":"00:02:00","value":73},...],"datasetInterval":1,"datasetType":"minute"}}
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-09","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":750.3615,"max":77,"min":30,"minutes":851,"name":"Out of Range"},{"caloriesOut":734.1516,"max":107,"min":77,"minutes":550,"name":"Fat Burn"},{"caloriesOut":131.8579,"max":130,"min":107,"minutes":29,"name":"Cardio"},{"caloriesOut":0,"max":220,"min":130,"minutes":0,"name":"Peak"}],"restingHeartRate":69}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":90},{"time":"00:01:00","value":89},{"time":"00:02:00","value":88},...],"datasetInterval":1,"datasetType":"minute"}} |a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |{"activities-heart":[{"dateTime":"2020-10-09","value":{"customHeartRateZones":[],"heartRateZones":[{"caloriesOut":750.3615,"max":77,"min":30,"minutes":851,"name":"Out of Range"},{"caloriesOut":734.1516,"max":107,"min":77,"minutes":550,"name":"Fat Burn"},{"caloriesOut":131.8579,"max":130,"min":107,"minutes":29,"name":"Cardio"},{"caloriesOut":0,"max":220,"min":130,"minutes":0,"name":"Peak"}],"restingHeartRate":69}}],"activities-heart-intraday":{"dataset":[{"time":"00:00:00","value":90},{"time":"00:01:00","value":89},{"time":"00:02:00","value":88},...],"datasetInterval":1,"datasetType":"minute"}}
??? info "FITBIT_STEPS_SUMMARY"
**RAPIDS_COLUMN_MAPPINGS**
| RAPIDS column | Stream column |
|-----------------|-----------------|
| TIMESTAMP | FLAG_TO_MUTATE |
| DEVICE_ID | device_id |
| LOCAL_DATE_TIME | FLAG_TO_MUTATE |
| STEPS | FLAG_TO_MUTATE |
**MUTATION**
- **COLUMN_MAPPINGS**
| Script column | Stream column |
|-----------------|-----------------|
| JSON_FITBIT_COLUMN | fitbit_data |
- **SCRIPTS**
```bash
src/data/streams/mutations/fitbit/parse_steps_summary_json.py
```
!!! note
`TIMESTAMP`, `LOCAL_DATE_TIME`, and `STEPS` are parsed from `JSON_FITBIT_COLUMN`. `JSON_FITBIT_COLUMN` is a string column containing the JSON objects returned by Fitbit's API. See an example of the raw data RAPIDS expects for this data stream:
??? example "Example of the expected raw data"
|device_id |fitbit_data |
|---------------------------------------- |--------------------------------------------------------- |
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-07","value":"1775"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":5},{"time":"00:01:00","value":3},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-08","value":"3201"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":14},{"time":"00:01:00","value":11},{"time":"00:02:00","value":10},...],"datasetInterval":1,"datasetType":"minute"}}
|a748ee1a-1d0b-4ae9-9074-279a2b6ba524 |"activities-steps":[{"dateTime":"2020-10-09","value":"998"}],"activities-steps-intraday":{"dataset":[{"time":"00:00:00","value":0},{"time":"00:01:00","value":0},{"time":"00:02:00","value":0},...],"datasetInterval":1,"datasetType":"minute"}}

View File

@ -1,15 +1,24 @@
# Mandatory Fitbit Format # Mandatory Fitbit Format
This is a description of the format RAPIDS needs to process data for the following PHONE sensors. This is a description of the format RAPIDS needs to process data for the following Fitbit\ sensors.
??? info "FITBIT_HEARTRATE_SUMMARY" ??? info "FITBIT_HEARTRATE_SUMMARY"
| RAPIDS column | Description | | RAPIDS column | Description |
|-----------------|-----------------| |-----------------|-----------------|
| LOCAL_DATE_TIME | TODO | | LOCAL_DATE_TIME | Date time string with format `yyyy-mm-dd hh:mm:ss` |
| DEVICE_ID | TODO | | DEVICE_ID | A string that uniquely identifies a device |
| HEARTRATE_DAILY_RESTINGHR | TODO | | HEARTRATE_DAILY_RESTINGHR | TODO |
| HEARTRATE_DAILY_CALORIESOUTOFRANGE | TODO | | HEARTRATE_DAILY_CALORIESOUTOFRANGE | TODO |
| HEARTRATE_DAILY_CALORIESFATBURN | TODO | | HEARTRATE_DAILY_CALORIESFATBURN | TODO |
| HEARTRATE_DAILY_CALORIESCARDIO | TODO | | HEARTRATE_DAILY_CALORIESCARDIO | TODO |
| HEARTRATE_DAILY_CALORIESPEAK | TODO | | HEARTRATE_DAILY_CALORIESPEAK | TODO |
??? info "FITBIT_STEPS_SUMMARY"
| RAPIDS column | Description |
|-----------------|-----------------|
| TIMESTAMP | An UNIX timestamp (13 digits) when a row of data was logged |
| LOCAL_DATE_TIME | Date time string with format `yyyy-mm-dd hh:mm:ss` |
| DEVICE_ID | A string that uniquely identifies a device |
| STEPS | Daily step count |

View File

@ -0,0 +1,43 @@
import json
import pandas as pd
from datetime import datetime
STEPS_COLUMNS = ("device_id", "steps", "local_date_time", "timestamp")
def parseStepsData(steps_data):
if steps_data.empty:
return pd.DataFrame(columns=STEPS_COLUMNS)
device_id = steps_data["device_id"].iloc[0]
records = []
# Parse JSON into individual records
for record in steps_data.fitbit_data:
record = json.loads(record) # Parse text into JSON
if "activities-steps" in record.keys():
curr_date = datetime.strptime(record["activities-steps"][0]["dateTime"], "%Y-%m-%d")
# Parse intraday data
if "activities-steps-intraday" in record.keys():
dataset = record["activities-steps-intraday"]["dataset"]
for data in dataset:
d_time = datetime.strptime(data["time"], '%H:%M:%S').time()
d_datetime = datetime.combine(curr_date, d_time)
row_intraday = (device_id,
data["value"],
d_datetime,
0)
records.append(row_intraday)
parsed_data = pd.DataFrame(data=records, columns=STEPS_COLUMNS)
return parsed_data
def main(json_raw, stream_parameters):
parsed_data = parseStepsData(json_raw)
parsed_data["timestamp"] = None # this column is added at readable_datetime.R because we neeed to take into account multiple timezones
return(parsed_data)